首页|基于YOLOv4的行人检测算法

基于YOLOv4的行人检测算法

扫码查看
针对实际场景下YOLOv4模型难以处理遮挡行人的问题,在保证YOLOv4模型实时性的情况下做出了改进,将YOLOv4模型应用于行人检测.为了提高模型检测遮挡行人的能力,模型采用K-means++聚类算法重新设计适用于行人目标尺寸的先验框,引入排斥损失函数项,使候选框与临近的非匹配目标真实框距离最大化,候选框和其他目标真实框的重叠比例最小化.改进后模型在具有挑战性的数据集CrowdHuman和Caltech上进行实验,实验结果均验证了文中方法的有效性,最后将模型应用于实际场景下的视频行人检测,同样验证了本文改进的有效性.
Pedestrian detection algorithm based on YOLOv4
Aiming at the YOLOv4 model's difficulty in dealing with occluded pedestrians in real sce-narios,this paper made improvements in ensuring the real-time performance of the YOLOv4 model and applied the YOLOv4 model to pedestrian detection.In order to improve the model's ability to de-tect occluded pedestrians,the model adopted the K-means++clustering algorithm to re-design the priori frames applicable to the pedestrian target sizes,and introduced the exclusion loss function term to maximise the distance between the candidate frames and the neighbouring real frames of non-matc-hing targets,and minimise the overlap ratio between the candidate frames and the real frames of other targets.The improved model was experimented on the challenging datasets CrowdHuman and Caltech,and the experimental results verified the effectiveness of it.Finally the model has been ap-plied to video pedestrian detection in real scenarios,which also verified the effectiveness of the improvements in this paper.

pedestrian detectionsingle-stage target detectionrepulsion lossocclude pedestrian

王洪元、齐鹏宇、唐郢、张继、朱繁、徐志晨

展开 >

常州大学计算机与人工智能学院,江苏常州 213164

行人检测 单阶段目标检测 排斥损失函数 遮挡行人

2024

常州大学学报(自然科学版)
常州大学

常州大学学报(自然科学版)

影响因子:0.459
ISSN:2095-0411
年,卷(期):2024.36(5)