首页|稀疏矩阵向量乘的自动调优

稀疏矩阵向量乘的自动调优

扫码查看
分析稀疏矩阵向量乘(SpMV)程序优化的难点,介绍两个自动调优的代表性工作:基于预实现模板的SMAT和从头设计程序的 AlphaSparse.详细介绍了它们的设计思路、实现细节、测试结果以及各自的优缺点.最后,对 SpMV自动调优的发展趋势进行了分析和预测.
Auto-tuning for Sparse Matrix-vector Multiplication
SpMV(sparse matrix-vector multiplication)is a widely used kernel in scientific computing.Since the performance of specific SpMV program is closely related to the distribution of non-zero elements in sparse matrices,there is no universal SpMV program design that can achieve high performance in all matrices.Therefore,auto-tuning has become a popular method for high SpMV performance.This paper analyzes the difficulties in optimizing SpMV and introduces two representative works of auto-tuning:SMAT,which is based on pre-implemented templates and AlphaSparse which designs SpMV programs from scratch.This paper introduces their designs,implementations,test results,advantages,and disadvantages.Finally,the trend of SpMV auto-tuning is analyzed and predicted.

high-performance scientific computingsparse matrixauto-tuningsparse matrix-vector multiplication

杜臻、谭光明

展开 >

中国科学院大学计算机科学与技术学院,北京 101408

中国科学院计算技术研究所,北京 100190

高性能科学计算 稀疏矩阵 自动调优 稀疏矩阵向量乘

国家自然科学基金杰出青年基金项目

T2125013

2024

计算物理
中国核学会

计算物理

CSTPCD北大核心
影响因子:0.366
ISSN:1001-246X
年,卷(期):2024.41(1)
  • 19