首页|遗传算法在中子-γ混合辐射场屏蔽材料优化设计中的应用

遗传算法在中子-γ混合辐射场屏蔽材料优化设计中的应用

扫码查看
针对中子-γ混合辐射场,对屏蔽材料中的金属氧化物填料组分进行优化,通过蒙特卡罗程序模拟获得WO3/Bi2O3/Gd2O3/B4C混合填料对低能中子与不同能量γ射线的综合屏蔽性能,采用遗传算法和神经网络寻找填料组分的最优配比.通过对总剂量当量的计算和优化,发现不同辐射环境下最优配比是不同的,在中子(热中子麦氏分布能谱)通量与γ射线(0.5~3 MeV)通量相同时,当添加屏蔽填料总质量一定,Bi2O3与B4C质量比为9∶1的混合填料综合屏蔽性能达到最优.将几种混合辐射环境下得到的最优解代入蒙特卡罗程序验证,误差在可接受范围内,表明该屏蔽填料组分的优化设计是可行的,节省计算时间,为屏蔽材料的设计和制备提供了理论依据.
Application of Genetic Algorithm to Optimal Design of Shielding Materials for Neutron-γ Mixed Radiation Fields
Based on the neutron-γ mixed radiation field,the metal oxide filler components in the material are optimized,and the comprehensive shielding performance of WO3/Bi2O3/Gd2O3/B4C mixed filler against low energy neutrons and different energy γ rays is obtained by Monte Carlo simulation.The optimal ratio of filler components is found by using genetic algorithm and neural network.Through the calculation and optimization of the total dose equivalent,it is found that the optimal ratio is different under different radiation environments.And the comprehensive shielding performance can be optimized by using Bi2O3 and B4C(9∶1)mixed fillers when the neutron(thermal neutron Maxwell distribution spectrum)flux is equal to γ ray(0.5-3 MeV)flux and the total mass of the shielding filler is constant.The results of Monte Carlo program show that the error is within an acceptable range,which indicates that the optimal design of the shielding filler is feasible.It can save a lot of calculation time and provide a theoretical basis for the design and preparation of shielding materials.

Monte Carlogenetic algorithmneural networkshielding designneutron-γ mixed radiation field

韩文敏、戴耀东、姚初清、田家祥、蒋丹枫、周一帆

展开 >

南京航空航天大学材料科学与技术学院,江苏南京 211106

中国广核研究院有限公司,广东深圳 518028

蒙特卡罗 遗传算法 神经网络 屏蔽设计 中子-γ混合辐射场

核能开发科研项目(十三五)

20191342

2024

计算物理
中国核学会

计算物理

CSTPCD北大核心
影响因子:0.366
ISSN:1001-246X
年,卷(期):2024.41(3)
  • 22