首页|几类典型应用的代数多重网格算法并行可扩展瓶颈分析

几类典型应用的代数多重网格算法并行可扩展瓶颈分析

扫码查看
对于大规模稀疏线性代数方程组,代数多重网格(AMG)是具有最优计算复杂度的求解算法,但由于其算法流程复杂,导致难以取得理想的并行可扩展性能,难以定位和分析其并行可扩展瓶颈.通过分析 AMG 算法的性能骨架和通信模式,归纳了三类可扩展性能瓶颈,并引入稀疏矩阵通信域的概念来刻画稀疏模式对并行通信性能的影响.针对辐射流体力学、结构力学、航空发动机三类实际应用的 6 个具有不同稀疏模式特征的典型算例,实现了多粒度并行可扩展性能瓶颈的定位与分析,总结了未来 AMG并行性能优化方向.
Analysis of Parallel Scalability Bottleneck for Algebraic Multigrid in Typical Real Applications
Algebraic multigrid(AMG)is an optimal algorithm for solving large-scale sparse linear systems.However,its complexity makes it challenging to achieve ideal parallel scalability and identify parallel scalability bottlenecks.In this paper,we analyze the performance skeletons and communication patterns of the AMG algorithm to identify three categories of scalability bottlenecks.Additionally,we introduce the concept of the sparse matrix communication domain to characterize the influence of sparse patterns on parallel communication performance.We examine six typical examples with varying sparse pattern features in practical applications such as radiation fluid dynamics,structural mechanics,and aero-engines.Through our analysis,we identify and analyze multi-granularity parallel scalability bottlenecks and provide insights into future directions for improving AMG parallel performance.

algebraic multigridparallel preconditioning algorithmsparallel scalabilityperformance analysisperformance bottleneck

毛润彰、杜皓、田鸿运、黄思路、张鹏、徐小文

展开 >

中国工程物理研究院研究生院,北京 100088

北京应用物理与计算数学研究所,北京 100094

南京大学匡亚明学院,江苏 南京 210023

中国工程物理研究院高性能数值模拟软件中心,北京 100088

展开 >

代数多重网格 并行预条件算法 并行可扩展性 性能分析 性能瓶颈

国家自然科学基金项目

62032023

2024

计算物理
中国核学会

计算物理

CSTPCD北大核心
影响因子:0.366
ISSN:1001-246X
年,卷(期):2024.41(4)