首页|定常不可压Navier-Stokes方程的两水平grad-div稳定化有限元方法

定常不可压Navier-Stokes方程的两水平grad-div稳定化有限元方法

扫码查看
使用标准的混合有限元方法数值求解定常不可压 Navier-Stokes 方程所得速度解的精度常常受压力的影响.为了克服或减弱压力对速度精度的影响,本文将 grad-div稳定化方法和两水平有限元方法相结合,提出数值求解定常不可压 Navier-Stokes方程的两水平 grad-div稳定化有限元方法.首先在粗网格上求解 grad-div 稳定化的非线性 Navier-Stokes问题,然后在细网格上分别求解 grad-div 稳定化的 Stokes 型、Newton 型和 Oseen 型的线性问题.最后给出数值算例验证两水平 grad-div稳定化有限元方法的高效性.
Two-level Grad-div Stabilized Finite Element Methods for Steady Incompressible Navier-Stokes Equations
Accuracy of the approximate velocity of the steady incompressible Navier-Stokes equations computed by the standard mixed finite element methods is often affected by the pressure.In order to circumvent or weaken the influence of pressure on the accuracy of the computed velocity,by combining grad-div stabilized method with two-level finite element method,this paper presents a kind of two-level grad-div stabilized finite element methods for solving the steady incompressible Navier-Stokes equations numerically.The basic idea of the methods is to first solve a grad-div stabilized nonlinear Navier-Stokes problems on a coarse grid,and then solve,respectively,Stokes-linearized,Newton-linearized and Oseen-linearized Navier-Stokes problem with grad-div stabilization on a fine grid.Numerical examples are given to verify the high efficiency of the two-level grad-div stabilized finite element methods.

Navier-Stokes equationsgrad-div stabilizationtwo-level methodfinite element method

王雅莉、郑波、尚月强

展开 >

西南大学数学与统计学院,重庆 400715

Navier-Stokes方程 grad-div稳定化 两水平方法 有限元方法

重庆市自然科学基金

cstc2021jcyjmsxmX1044

2024

计算物理
中国核学会

计算物理

CSTPCD北大核心
影响因子:0.366
ISSN:1001-246X
年,卷(期):2024.41(4)