首页|一类结合神经算子网络与贝叶斯神经网络的主动学习算法:从微观数据学习集群行为的宏观模型

一类结合神经算子网络与贝叶斯神经网络的主动学习算法:从微观数据学习集群行为的宏观模型

扫码查看
随着人工智能和科学计算的发展,深度学习在数学建模中发挥着越来越重要的作用.本文发展了一类结合微观数据的主动学习算法对集群行为建立的宏观模型.具体来说,针对 Cucker-Smale 模型,结合微观粒子数据与部分机理,发展了一类结合神经算子网络与贝叶斯神经网络的主动学习算法.该算法可通过群体行为的微观数据高效地建立对应的宏观 Euler模型.最后通过一维和二维数值模拟验证了主动学习算法的有效性.
Active Learning Algorithm Using Neural Operator Networks and Bayesian Neural Networks:Learning Macroscale Models for Collective Behavior from Microscale Data
With the development of artificial intelligence and scientific computing,deep learning plays a significant role in mathematical modeling.In this work we develop an active learning algorithm that uses microscopic data to establish a macroscopic model for collective behavior.Specifically,we take the Cucker-Smale model in this work and develop the corresponding active learning algorithm that integrates neural operator networks and Bayesian neural networks by utilizing microscopic particle data and partial physics.This algorithm is used to efficiently establishes the corresponding macroscopic Euler model through microscopic data.Finally,the effectiveness of the active learning algorithm is validated through one-dimensional and two-dimensional numerical simulations.

mathematical modelingnonlocal Euler equationsBayesian neural networksactive learning algorithmCucker-Smale model

高正雅、毛志平

展开 >

厦门大学数学科学学院,福建 厦门 361005

宁波东方理工大学(暂名)数学科学学院,浙江 宁波 315200

数学建模 非局部欧拉方程 贝叶斯神经网络 主动学习算法 Cucker-Smale模型

2024

计算物理
中国核学会

计算物理

CSTPCD北大核心
影响因子:0.366
ISSN:1001-246X
年,卷(期):2024.41(6)