首页|基于多特征融合的下肢动作模式识别方法研究

基于多特征融合的下肢动作模式识别方法研究

扫码查看
针对现存基于肌电信号的动作模式识别方法数据量不足、特征融合冗余、分类器识别精度低、泛化能力差且动作类别少等问题,以下肢动作为研究对象,采集爬坡、平地行走、上楼以及下楼 4 种动作类别的表面肌电信号(surface electromyography,sEMG),提出一种基于特征相关性和任务贡献度的特征筛选方法,最终实现了多特征融合的下肢动作模式识别.该方法在提高下肢动作模式识别的效率与精度方面显著优于传统的单特征和原始信号识别方法,可为特征筛选、多特征融合动作模式识别研究提供参考.
Research on lower limb action pattern recognition method based on multi-feature fusion
Existing action pattern recognition methods based on electromyography(EMG)signals have challenges such as insuf-ficient data volume,redundant feature fusion,low classifier recognition accuracy,poor generalization ability,and a limited number of recognized action categories.This study focuses on lower limb movement,collecting surface electromyography(sEMG)signals for four movement categories:walking uphill,walking horizontally,ascending stairs,and descending stairs.This method adopts a feature selection method based on feature correlation and task contribution and finally achieves multi-feature fusion for lower limb action pattern recognition.This method is significantly better than traditional single feature and original signal recognition meth-ods.It provides valuable insights into the study of feature selection and multi-feature fusion in action pattern recognition.

surface electromyographypattern recognitionfeature screeningfeature fusion

黄重宇

展开 >

重庆交通大学机电与车辆工程学院,重庆 400074

表面肌电信号 模式识别 特征筛选 特征融合

2024

技术与市场
四川省科技信息研究所

技术与市场

影响因子:0.566
ISSN:1006-8554
年,卷(期):2024.31(3)
  • 8