首页|基于ARIMA-RBF的地铁车站客流预测

基于ARIMA-RBF的地铁车站客流预测

扫码查看
通过分析ARIMA模型和RBF模型的基本原理,结合ARIMA模型时间序列预测特性和RBF神经网络非线性处理能力,建立地铁车站客流量预测的ARIMA-RBF组合模型.以广州地铁2号线市二宫站为例,将建立的ARIMA-RBF组合模型应用于客流预测的实际场景,结果表明:ARIMA-RBF组合模型误差仅为2.23%,优于ARIMA模型.
Passenger flow prediction of subway stations based on ARIMA-RBF
By analyzing the fundamental principles of the ARIMA model and the RBF model,and combining the time series forecasting characteristics of ARIMA with the nonlinear processing capabilities of the RBF neural network,an ARIMA-RBF hybrid model is developed to predict passenger flow at subway stations.Finally,using the Shiergong Station on Guangzhou Metro Line 2 as a case study,the ARIMA-RBF hybrid model is applied to real-world passenger flow prediction scenarios.The results show that the ARIMA-RBF hybrid model achieves an error rate of just 2.23%,which is superior to that of the traditional ARIMA model.

station passenger flowARIMA modelRBF modelARIMA-RBF combined prediction

孙陈

展开 >

安徽省道路运输管理服务中心,安徽 合肥 230000

车站客流量 ARIMA模型 RBF模型 ARIMA-RBF组合预测

2024

技术与市场
四川省科技信息研究所

技术与市场

影响因子:0.566
ISSN:1006-8554
年,卷(期):2024.31(12)