首页|基于优化BP神经网络的变压器故障诊断研究

基于优化BP神经网络的变压器故障诊断研究

Research on transformer fault diagnosis based on optimized BP neural network

扫码查看
BP神经网络在变压器故障诊断方面己经得到了应用,但仍存有收敛速度慢、易陷入局部极小等不足.为解决以上问题,采用主成分分析法优化BP神经网络诊断模型,达到提高诊断精度的目的.通过采用主成分分析对网络学习样本进行降维分析,使得神经网络的结构简化及神经网络的不足得到改善.最后基于该模型对变压器故障进行实例分析,并对比其他变压器诊断方法,结果表明主成分-BP神经网络判别模型具有更高的准确性和可靠性.
BP neural network has been applied in transformer fault diagnosis,but it still has shortcomings,such as slow convergence speed,and easy falling into local minimum.So to solve the above problems,this paper uses principal component anal-ysis to optimize the BP neural network diagnosis model,to improve the diagnosis accuracy.Principal component analysis(PCA)is used to reduce the dimension of network learning samples.The neural network structure is simplified and the shortage of the neural network is improved.Finally,based on this model,the transformer fault is analyzed and compared with other transformer diagnosis methods.The results show that the principal component-BP neural network discriminant model has higher accuracy and reliability.

transformerBP neural networkprincipal component analysisfault diagnosis

刘军、冯忠华、蒋金宏、李恒胜

展开 >

贵州北盘江电力股份有限公司光照分公司,贵州黔西南 561405

变压器 BP神经网络 主成分分析 故障诊断

2024

技术与市场
四川省科技信息研究所

技术与市场

影响因子:0.566
ISSN:1006-8554
年,卷(期):2024.31(12)