首页|人工智能技术在降低消化内科抗菌药物使用强度中的应用

人工智能技术在降低消化内科抗菌药物使用强度中的应用

扫码查看
目的:收集我院2022年2月-4月期间消化内科1752例住院患者病例数据,基于感染相关的检验指标、抗菌药物使用强度DDDs值等构建分类预测模型,预测患者是否使用抗菌药物以及抗菌药物使用强度;对分类预测结果为"可以使用抗菌药物"的患者构建回归预测模型,预测应使用的抗菌药物DDDs值。利用XGBoost算法构建分类预测模型,采用LGBMRegressor、XGBRegressor、BaggingRegressor、PLSRegression、LassoLarsCV共5种回归算法构建回归预测模型,并采用交叉验证和独立测试集评估模型性能。最终将模型集成到临床决策支持系统中应用于消化科病区。结果:利用本文构建的人工智能算法预测抗菌药物使用情况,消化科2022年6月-11月抗菌药物DDDs均值为32。03,相比于2021年同期6月-11月抗菌药物DDDs值(62。67)明显降低(P<0。001),而住院平均天数和住院平均费用相比于2021年同期无明显改变(P>0。05)。结论:基于人工智能的抗菌药物智能预测系统有助于有效降低消化内科抗菌药物使用强度。
Application of Artificial Intelligence Technology in the Management of An-tibiotic Usage Intensity in the Gastroenterology Department
Objective:To apply artificial intelligence technology to reduce the intensity of antimicrobial use in the gastroenterology department.Methods:The case data of 1752 inpatients in the gastroenterology department of our hospital from February to April 2022 were collected.Based on the infection-related test indicators and the defined daily doses(DDDs)value of antimicrobial use,a classification prediction model was constructed to predict whether patients will use antimicrobials and the intensity of antimicrobial use.For patients with the classification prediction result of"antimicrobials can be used",a regression prediction model was constructed to predict the DDDs value of the antimicrobials that should be used.The XGBoost algorithm was used to construct the classification prediction model,and a total of 5 regression algorithms including LGBMRegressor,XGBRegressor,BaggingRegressor,PLSRegression and LassoLarsCV were used to construct the regression prediction models.Cross-validation and an independent test set were used to eval-uate the performance of the models.Finally,the models were integrated into the clinical decision support system and applied in the gastroenterology ward.Results:Using the artificial intelligence algorithm con-structed in this paper to predict the use of antimicrobials,the mean DDDs of antimicrobials in the gas-troenterology department from June to November 2022 was 32.03,which was significantly lower than that from June to November 2021(62.67)(P<0.001),while the average length of hospital stay and hospitaliza-tion costs showed no significant changes compared with the same period in 2021(P>0.05).Conclusion:The artificial intelligence-based antimicrobial intelligent prediction and early warning system is helpful to effectively reduce the intensity of antimicrobial use in the gastroenterology department.

GastroenterologyAntimicrobial use intensityClassification modelRegression model

朱萍、周晓颖、张小亮、张吉、张佳红

展开 >

江苏省人民医院质量管理处,南京 210000

江苏省人民医院消化内科,南京 210000

江苏省人民医院信息处,南京 210000

江苏省人民医院药学部,南京 210000

江苏省人民医院党政综合办公室,南京 210000

展开 >

消化内科 抗菌药物使用强度 分类模型 回归模型

2024

药学与临床研究
江苏省药学会

药学与临床研究

CSTPCD
影响因子:0.95
ISSN:1673-7806
年,卷(期):2024.32(6)