首页|一种基于通道注意力机制的交通监控视频超分辨率算法

一种基于通道注意力机制的交通监控视频超分辨率算法

A Video Super Resolution Algorithm Based on Channel-Wise Attention for Traffic Surveillance

扫码查看
为提升交通监控视频的显示质量,进而提高监控视频车牌识别成功率,提出一种基于通道注意力机制(Channel-wise Attention,CA)和BasicVSR模型的监控视频超分辨率模型.在BasicVSR模型中引入CA,使模型能学习不同通道之间的非线性依赖关系,从而有效提升监控视频超分辨率图像的质量.在某交通监控场景下开展车牌识别试验,对该CA-BasicVSR模型的有效性进行验证,结果表明:在交通监控画面还原任务中,该模型对画面还原的峰值信噪比相比EDVR-L模型和BasicVSR模型能分别提高约1.3 dB和0.3 dB;在车牌识别任务中,使用该模型处理的交通监控视频画面作为输入,相比原始低分辨率的视频画面,能提高车牌识别的成功率.
The CA(Channel-wise Attention)is introduced into the Basic VSR model to realize the learning of the nonlinear de-pendency of residual convolutional structure on each channel in the bidirectional information propagation process,and,there-fore,improve the video quality of surveillance video,which is essential for accurate license plate recognition.Compared with EDVR-L and conventional BasicVSR,the developed model can improve the PSNR(Peak Signal-to-Noise Ratio)by about 1.3 dB and 0.3 dB respectively as for restoring surveillance video is concerned.A license plate recognition experiment for a given traf-fic surveillance scenario is designed which demonstrates the improvement of the license plate recognition success rate gained by the new algorithm.

video super resolutionBasicVSR modelCA(Channel-wise Attention)license plate recognition

林哲显

展开 >

上海船舶运输科学研究所有限公司,上海 200135

视频超分辨率 BasicVSR模型 通道注意力机制(CA) 车牌识别

2024

上海船舶运输科学研究所学报
上海船舶运输科学研究所

上海船舶运输科学研究所学报

影响因子:0.301
ISSN:1674-5949
年,卷(期):2024.47(1)
  • 13