首页|一种基于迁移卷积神经网络的滚动轴承故障诊断方法概述

一种基于迁移卷积神经网络的滚动轴承故障诊断方法概述

An Overview of a Fault Diagnosis Method for Rolling Bearings Based on Transfer Convolutional Neural Network

扫码查看
针对传统基于卷积神经网络(Convolutional Neural Network,CNN)的轴承故障诊断方法的特征提取能力有限,在数据样本较少且鲁棒性较差的情况下无法获得准确的诊断结果的问题,提出采用一种将CNN与迁移学习(Transfer Learning,TL)相结合的方法,即基于迁移卷积神经网络(Transfer Convolutional Neural Network,TCNN)的滚动轴承故障诊断方法.该方法选用在ImageNet数据集上预训练的基准CNN模型AlexNet网络作为基础架构的CNN模型,结合TL将已有预测模型中的底层参数冻结,仅对上层参数进行训练更新,当训练次数达到一定数量时,能有效提升故障诊断准确率.试验结果表明,该方法能提升故障诊断模型在数据样本较少情况下的抗噪声能力和泛化性能,进而提高滚动轴承故障诊断的精度.
Ordinary neural-network-based bearing fault diagnosis methods do not strong enough in extracting features.For sce-narios with limited data samples or low robustness,these methods cannot obtain accurate diagnostic results.This paper devel-ops a fault diagnosis method for rolling bearings based on integration of CNN(Convolutional Neural Networks)with TL(Transfer Learning),i.e.TCNN(Transfer Convolutional Neural Network).The AlexNet network,one of the benchmark CNN models pretrained with the ImageNet dataset,is selected in the proposed transfer CNN.On this basis,TL is combined to freeze the underlying parameters in existing prediction models,and only train and update upper level parameters.When the number of iterations reaches a certain level,this approach can effectively improve the accuracy rate of fault diagnosis.The experimental results show that the TCNN can improve the noise resistance and generalization ability of the model with smaller dataset,and improve the accuracy of fault diagnosis.

rolling bearingfault diagnosisCNN(Convolutional Neural Networks)TL(Transfer Learning)

陈鸣妤、赵致远、周佳慧

展开 >

上海船舶运输科学研究所有限公司 舰船自动化系统事业部,上海 200135

中国舰船研究设计中心,武汉 430064

大连船舶重工集团有限公司,辽宁 大连 116083

滚动轴承 故障诊断 卷积神经网络(CNN) 迁移学习(TL)

2024

上海船舶运输科学研究所学报
上海船舶运输科学研究所

上海船舶运输科学研究所学报

影响因子:0.301
ISSN:1674-5949
年,卷(期):2024.47(2)
  • 9