首页|特大暴雨下城市地铁人员应急救援与疏散优化

特大暴雨下城市地铁人员应急救援与疏散优化

扫码查看
为提高特大暴雨下地铁车站人员救援与疏散效率,提出地铁人员的应急救援与疏散优化建模与求解方法,旨在协同优化救援中心选址、应急路径设计与分配决策.针对特大暴雨的危害性和地铁被困人员的心理恐慌程度,改进感知风险度量模型.结合应急救援与疏散的阶段性,建立成本和感知风险最小的应急救援与疏散的选址-路径优化模型.设计基于分解多目标进化算法和分支切割算法的两阶段求解步骤.最后,通过郑州实例和测试算例,验证新模型和算法的有效性.计算结果表明:新模型和算法能在 2.13s 内求得有效方案;相较于传统风险模型,新模型能够降低 9.03%的运输成本;相较于常规的多目标优化算法,新算法能缩短至少 60.00%的求解时间,并有较高的计算稳定性.
Optimization of emergency rescue and evacuation for urban subway personnel in severe rainstorms
In order to improve the efficiency of rescue and evacuation of the people trapped in the subway station in severe rainstorms,an optimization model and solution approach for subway personnel's emergency rescue and evacuation is developed,which decides the facility location,emergency route and flow allocation simultaneously.Considering the rainstorms'severity and the psychological panic of trapped people during emergency rescue,an improved perceived risk assessment is designed.Then,addressing the framework of multi-stage emergency rescue and evacuation system,a location-routing model,minimizing the total cost and perceived risk,is developed for the subways emergency rescue and evacuation.The two-stage solution approach based on decomposition techniques using multi-objective evolutionary and branch and cut algorithms is designed.Finally,a case study of Zhengzhou and several tests are provided to evaluate the effectiveness.The computational results show that,new model and algorithm can provide an efficient plan within 2.13 seconds,and has certain sensitivity to key parameters.Comparing to the traditional model,the new risk assessment can reduce the transportation cost by 9.03%.Comparing to the general multi-objective optimization methods,the new algorithm can reduce the calculation time by at least 60.00%,and keeps stable performance in solving problems of different scales.

traffic engineeringemergency rescuelocation-routingperceived riskmulti-objective evolutionary algorithmevacuationurban subwaysevere rainstorms

张龙飞、赵佳虹、瞿伟韬

展开 >

广东工业大学 土木与交通工程学院,广州 510006

交通工程 应急救援 选址-路径 感知风险 多目标进化算法 疏散 城市地铁 特大暴雨

国家自然科学基金项目广东省自然科学基金项目

618030912022A1515010192

2024

交通科技与经济
黑龙江工程学院

交通科技与经济

影响因子:0.862
ISSN:1008-5696
年,卷(期):2024.26(2)
  • 24