首页|域自适应动态图卷积网络下的地铁客流预测

域自适应动态图卷积网络下的地铁客流预测

扫码查看
针对客流预测中存在因数据量有限导致模型训练过程中出现高方差和泛化性差等问题,提出一种域自适应动态图卷积网络(GCN-DANN).通过构建地铁线路的节点网络拓扑结构,并利用动态图卷积网络提取相邻站点之间的流量、站点所属线路的交通负载以及不同线路之间的流量传播等关联特征.同时采用迁移学习自适应对齐源域和目标域的特征,减少因数据分布不一致而导致预测性能低等现象.最后,通过全连接层将源域和目标域中的特征进行信息融合,进而弥补训练过程出现高方差和泛化性差等缺陷.在深圳地铁数据集上对模型训练,分别在杭州地铁全样本和 20%样本数据集上进行测试和验证.实验结果表明,在 20%样本数据集下,GCN-DANN 网络与经典预测网络相比,MAE、RMSER 和 MAPE 分别平均下降 5.34%、6.07%、2.97%.在全样本数据集下,GCN-DANN在 20%样本基础上的三项指标分别下降 2.76%、1.77%、3.5%,相较于其他经典网络下降幅度最小.研究可解决实际应用中因数据稀缺导致预测效果差的问题.
Subway passenger flow prediction based on domain-adaptive dynamic graph convolution
In response to the challenges in passenger flow prediction stemming from limited data,which led to issues of high variance and poor generalization during model training,we propose a Domain Adaptive Dynamic Graph Convolutional Network(GCN-DANN).This approach involves constructing a node network topology for metro lines and utilizing dynamic graph convolutional networks to extract correlated features,such as flow between adjacent stations,traffic load of stations belonging to the same line,and flow propagation between different lines.Additionally,we employ transfer learning to adaptively align features between the source and target domains,mitigating the performance degradation caused by inconsistent data distributions.Finally,through a fully connected layer,we integrate features from both domains to address deficiencies,such as high variance and poor generalization,observed during the training process.The model is trained on the Shenzhen metro dataset and tested on both the full and 20%sample datasets of the Hangzhou metro.Experimental results demonstrate that on the 20%sample dataset,compared to classical forecasting networks,the GCN-DANN network achieves an average reduction of 5.34%in MAE,6.07%in RMSE,and 2.97%in MAPE.On the full sample dataset,GCN-DANN exhibits decreases of 2.76%in MAE,1.77%in RMSER,and 3.5%in MAPE,based on the 20%sample.Compared to other classical networks,it experiences the smallest decrease in performance.This research successfully addresses the challenge of poor prediction performance in practical applications due to sparse data availability.

intelligent transportationpassenger flow forecastingdomain adaptationgraph convolutional network(GCN)sparse samples

程子涵、张阳、辛东嵘

展开 >

福建理工大学 交通运输学院,福州 350118

智能交通 客流预测 域自适应 图卷积网络 稀缺样本

福建省自然科学基金项目

2023J01946

2024

交通科技与经济
黑龙江工程学院

交通科技与经济

影响因子:0.862
ISSN:1008-5696
年,卷(期):2024.26(3)
  • 23