首页|事故紧急度视角下人机混驾车流拥堵演化仿真

事故紧急度视角下人机混驾车流拥堵演化仿真

扫码查看
为提高事故路段通行效率,提出考虑事故紧急度的元胞自动机模型.首先,构建人工驾驶车辆(HVs)驾驶员与自动驾驶车辆(CAVs)的事故紧急度感知量化模型;其次,区分行驶车辆所在的车道位置,将量化后的事故紧急度加入车辆的换道和跟驰模型中,分析车辆在选择减速跟驰、变换车道或加速驶离等不同驾驶行为时,事故紧急度对交通流产生的 4 种影响情景;最后,在不同情景下,通过仿真验证车辆受到事故紧急度引导时,事故路段人机混合交通流组织的改善效果.结果表明:相较于第 1 种情景,第 3 种影响情景的总平均运行速度提高 36.94%、上游车辆拥堵影响范围减少 75%、最大排队长度改善 10.56%、平均排队长度改善 12.09%.
Simulation of congestion evolution in human-machine hybrid driving flow from the perspective of accident urgency
In order to improve the efficiency of accidental roadway access,a cellular automata model considering accident urgency was proposed.Firstly,a quantitative perception model of accident urgency between drivers of hand-driven vehicles(HVs)and connected and automated vehicles(CAVs)was constructed;secondly,the quantified accident urgency is incorporated into the lane-specific vehicle switching and following models,and the four impact scenarios of traffic flow caused by different driving behaviors such as deceleration following,lane changing,and acceleration departure are analyzed;finally,under different scenarios,simulation was used to verify the improvement effect of human-machine hybrid traffic flow organization in the accident section when vehicles were guided by the accident urgency.The results show that compared with the first scenario,the third impact scenario improves the total average operating speed by 37%,reduces the upstream vehicle congestion impact area by 75%,improves the maximum queue length by 10.56%,and improves the average queue length by 12.09%.

traffic safetythe flow of human-machine hybrid vehiclesevolution of traffic flowcellular automataemergency level of accidents

李皖、傅成红

展开 >

福建理工大学 交通运输学院,福州 350118

福建理工大学 交通运输研究所,福州 350118

交通安全 人机混驾车流 交通流演化 元胞自动机 事故紧急度

福建省自然科学基金项目福建理工大学科研项目

2020J05194GY-H-21153

2024

交通科技与经济
黑龙江工程学院

交通科技与经济

影响因子:0.862
ISSN:1008-5696
年,卷(期):2024.26(5)