首页|基于半监督学习的路面裂缝检测

基于半监督学习的路面裂缝检测

扫码查看
针对裂缝自动检测任务中难以获取大量精确标注样本数据的问题,提出 LGS-Net(Local Global Similarity-Network)模型.LGS-Net的核心在于利用裂缝图像区域的语义相似性,有效结合少量已标注数据和大量未标注图像数据,通过半监督学习实现裂缝自动检测.为全面评估 LGS-Net 的性能,实验在 GAPs384 和 Crack500 数据集上进行验证.结果表明,在标注资源有限的情况下,LGS-Net能够实现高精度的裂缝检测.通过对检测结果的可视化分析,证明 LGS-Net具有在复杂环境下有效识别裂缝的能力.LGS-Net 利用路面裂缝图像的语义相似性特征进行检测,能为路面裂缝检测的工程应用提供技术支持.
Pavement crack detection based on semi-supervised learning
To address the challenge of obtaining a large volume of precisely annotated sample data for automatic crack detection tasks,LGS-Net(Local Global Similarity Network)is proposed in the paper.The core of LGS-Net is to utilize the semantic similarity of the crack image region,effectively combine a small amount of labeled data and a large amount of unlabeled image data,and realize the automatic crack detection by semi-supervised learning through to realize automatic crack detection.To comprehensively evaluate the performance of LGS-Net,the experiments are validated on GAPs384 and Crack500 datasets.The results show that LGS-Net is able to achieve high-precision crack detection with limited labeling resources.The ability of LGS-Net to effectively identify cracks in complex environments is demonstrated through the visual analysis of the detection results.LGS-Net utilizes the semantic similarity features of pavement crack images for detection,which provides technical support for engineering applications of pavement crack detection.

road engineeringcrack detectionsemantic similaritysemi-supervised learningcontrastive learning

郭文浩、张德津

展开 >

西南交通大学 地球科学与工程学院,成都 611756

广东省城市空间信息工程重点实验室,广东 深圳 518060

深圳大学 建筑与城市规划学院,广东 深圳 518060

道路工程 裂缝检测 语义相似性 半监督学习 对比学习

国家重点研发计划项目

2019YFB2102703

2024

交通科技与经济
黑龙江工程学院

交通科技与经济

影响因子:0.862
ISSN:1008-5696
年,卷(期):2024.26(5)