首页|改进的YOLOv8的路面裂缝识别算法

改进的YOLOv8的路面裂缝识别算法

扫码查看
路面裂缝是影响道路正常使用和交通安全的关键隐患之一.针对现阶段算法在路面裂缝识别中存在的成本高、效率低及准确率不足等问题,提出一种以 YOLOv8 框架为基础的改进的路面裂缝识别算法.首先,引入小目标层及额外的检测分割头,提升局部细小特征信息的检测和融合能力.其次,借鉴 Transformer 处理序列数据的上下文关联能力,融入了PET模块以获取全局自注意力机制,进一步优化对细小且长的裂缝的识别性能.此外,引入SPPF复用以增强特征信息表征,提升目标物体的识别和定位能力.结果表明,改进模型在路面裂缝识别有较显著提升,其mAP50 达到 73.1%,较原始提升 8.3%,同时,与SSD、Mask R-CNN、YOLOv5、YOLOv6 等 4 种算法进行对比分析,在均衡时空资源消耗和准确率下,改进算法具有更高的识别精度及环境适应性.
Improved pavement crack recognition algorithm of YOLOv8
Road surface cracks are one of the critical hidden dangers affecting the normal use of roads and traffic safety.To address the issues of high cost,low efficiency,and insufficient accuracy in the current algorithms for pavement crack identification,an improved pavement crack identification algorithm based on the YOLOv8 framework is proposed.Firstly,a small object layer and an additional detection segmentation head are introduced to enhance the detection and fusion capabilities of local fine feature information.Secondly,by borrowing the context correlation capabilities of the Transformer in processing sequential data,the PET module is integrated to obtain a global self-attention mechanism,further optimizing the identification performance for fine and long cracks.Additionally,SPPF reuse is introduced to enhance the representation of feature information,improving the recognition and localization capabilities of target objects.The results show that the improved model significantly enhances pavement crack identification,with an mAP50 of 73.1%,representing an 8.3%improvement compared to the original model.Meanwhile,a comparative analysis with four other algorithms,SSD,Mask R-CNN,YOLOv5,and YOLOv6,demonstrates that the improved algorithm achieves higher recognition accuracy and environmental adaptability while balancing temporal-spatial resource consumption and accuracy.

deep learningroad surface crack detectionYOLOv8 modeldetection headPET module

何润昌、吐尔逊·买买提、刘健、朱兴林、何春光、董俊、徐粒

展开 >

新疆农业大学 交通与物流工程学院,乌鲁木齐 830052

新疆农业大学 智能交通工程研究中心,乌鲁木齐 830052

干旱荒漠区公路工程技术交通运输行业重点实验室,乌鲁木齐 830099

深度学习 路面裂缝识别 YOLOv8模型 检测分割头 PET模块

新疆交通投资(集团)有限责任公司科研项目新疆农业大学研究创新计划项目新疆农业大学交通运输工程校级重点学科开放课题项目

ZKX-FWCG-202212-015XJAUGRI2023040XJAUTE2022K01

2024

交通科技与经济
黑龙江工程学院

交通科技与经济

影响因子:0.862
ISSN:1008-5696
年,卷(期):2024.26(5)