首页|人机混驾条件下的车辆纵向交互安全影响因素分析

人机混驾条件下的车辆纵向交互安全影响因素分析

扫码查看
自动驾驶汽车正向现有交通运行环境中逐步渗透,形成了与人工驾驶汽车混合运行的人机混驾交通流.有研究表明:自动驾驶汽车的百公里事故率为9.1,高出人工驾驶汽车(4.1)的1倍多;另外,人机纵向交互造成的追尾事故形态占所有事故形态的57.5%,远超过人类驾驶的27.9%,因此亟需研究人机纵向交互安全影响机理.现有研究通常采用驾驶模拟实验,分析虚拟仿真环境下人工驾驶汽车驾驶人与自动驾驶汽车的纵向交互行为与安全性,但模拟环境与实际道路场景差异较大,难以准确反映人机混驾交通流中的真实车辆交互行为.通过自动驾驶汽车开放道路测试数据,获取真实混驾条件下的车辆纵向交互场景,对车辆类型、行驶环境等影响因素与纵向交互行为及安全的影响机理开展研究.具体针对筛选后的人工驾驶汽车驾驶人分别跟驰人工驾驶汽车和跟驰自动驾驶汽车的场景数据,利用结构方程模型,构建了前车驾驶行为、前车车辆类型、路段运行速度水平与交互安全替代指标之间的链式作用关系.模型结果表明:前车车辆类型是否为自动驾驶汽车是影响纵向交互安全的显著影响因素之一,其他变量保持不变时,人工驾驶汽车驾驶人与自动驾驶前车的交互安全性相较于人类驾驶前车降低.
An Analysis of Safety Influencing Factors for Longitudinal Interaction Between Vehicles in Human-machine Mixed Traffic Driving Conditions
Autonomous vehicles are gradually introduced to the existing traffic environment,leading to a mixed flow of both autonomous vehicles and human-driven vehicles.Studies show that the crash rate per-kilometer for au-tonomous vehicles is 9.1,which is more than twice that of human-driven vehicles(4.1).The ratio of the rear-end crash pattern between autonomous vehicles and human-driven vehicles is 57.5%,which exceeds 27.9% of among human-driven vehicles.Therefore,there is an urgent need to investigate the safety mechanisms of longitudinal inter-actions of autonomous vehicles and human-driven vehicles.Existing studies typically employ driving simulation ex-periments to analyze the longitudinal interaction and safety between human-driven and autonomous vehicles in vir-tual environments.However,the differences between simulated environments and real-world road scenarios make it challenging to accurately capture the interaction behavior between vehicles in mixed human-autonomous traffic flows.In this study,public road-testing dataset of autonomous vehicles are utilized to extract longitudinal interact-ing scenarios,and the influencing factors and the impact mechanisms of longitudinal interaction behavior and safety are investigated.Specifically,scenarios of human-driven vehicles following the other human-driven vehicle,and fol-lowing an autonomous vehicle are studied,Structural equation model is applied to construct a chained relationship among driving behavior of leading vehicle,type of leading vehicle(whether it is an autonomous vehicle or not),speed level of vehicles on the roadway,and the safety surrogate measure.The modelling results revealed the type of leading vehicle is identified as an influencing factor in longitudinal interaction safety.When other variables remain constant,the safety of interactions between human drivers and autonomous vehicles as leading vehicles decreased compared to interactions with other human-driven vehicles as leading vehicles.

traffic safetyautonomous drivingmixed drivinginfluencing factors analysisStructural equation mod-elWaymo dataset

王艺贇、余荣杰

展开 >

同济大学道路与交通工程教育部重点实验室 上海 201804

交通安全 自动驾驶 人机混驾 影响因素分析 结构方程模型 Waymo数据

国家自然科学基金项目

52172349

2024

交通信息与安全
武汉理工大学 交通计算机应用信息网

交通信息与安全

CSTPCD北大核心
影响因子:0.598
ISSN:1674-4861
年,卷(期):2024.42(3)
  • 4