首页|融合高精度地图的多激光雷达路侧智能感知方法

融合高精度地图的多激光雷达路侧智能感知方法

扫码查看
在车路协同路侧感知研究中,由于点云数据量庞大且存在着不可避免的目标遮挡情况,导致检测效率低、目标轨迹不稳定和跟踪精度低的问题.针对上述问题,提出了1种融合高精度地图的多激光雷达路侧智能感知方法,通过融合高精度地图信息,提高感知结果的准确性和可靠性.该方法分为3个部分:①通过多激光雷达的标定结果,利用高精度地图完成三维点云区域中感兴趣区域的提取,从而有效减少待处理点云的数量,提升计算效率;②基于极化图高斯混合背景模型的背景建模方法,利用极化图完成运动目标快速检测,避免大规模激光点云的直接处理,有效提升检测效率;③利用车辆航向与车道线方向一致性约束,将高精度地图中的车道方向转化为卡尔曼滤波框架下的车辆状态线性约束,改善车辆检测与轨迹跟踪的性能.实验中,分别在仿真交叉路口与实车实验道路双T形路口对算法与模型进行测试验证.相比于其他方法,所提出的方法数据量减少了55%,目标检测准确率提高了12%,耗时减少了56%,目标跟踪的误差极值、误差均值以及均方根误差均有所降低.实验结果表明:所提的方法能有效融合高精度地图信息,在大范围道路场景下实现对道路运动目标的快速检测与稳定跟踪.
Multi-LiDAR Roadside Intelligent Perception Method Fusing High-Definition Map
In the research of vehicle-road collaborative roadside perception,challenges such as low detection effi-ciency,unstable target trajectories,and inaccurate tracking arise due to the sheer volume of point cloud data and the inevitable obstruction of targets.To tackle these issues,a method of intelligent roadside perception utilizing multi-LiDAR fused with High-Definition(HD)maps is proposed.The goal is to enhance the accuracy and reliabili-ty of perception outcomes by incorporating detailed map information.Leveraging the calibration results of multi-Li-DAR,the extraction of the region of interest(ROI)within the three-dimensional point cloud is achieved through HD maps,effectively reducing the quantity of point clouds for processing and enhancing computational efficiency.Em-ploying the polar-image Gaussian mixture model(P-GMM)for background modeling,moving targets are swiftly identified using polar-images to circumvent direct processing of extensive LiDAR point clouds,thereby boosting de-tection efficiency.By enforcing the alignment between vehicle heading and lane line direction,the lane orientation in the HD map is translated into a linear constraint of vehicle state within the Kalman filter framework,thereby en-hancing the efficacy of vehicle detection and trajectory tracking.Experimental validation is conducted using simulat-ed crossroads and real-world roads with double T-shaped intersections.Compared to other methods,the method pro-posed yielded a 55% reduction in data volume,a 12% increase in target detection accuracy,and a 56% decrease in processing time.The improvements in extreme error,mean error,and root mean square error are also achieved in tar-get tracking.The experimental results show that the method proposed can fuse HD map information effectively,achieving rapid detection and tracking of road-moving targets in a wide range of road scenarios.

intelligent transportationroadside perceptiontarget trackingKalman filterHigh-Definition mappo-lar-image

胡钊政、陈琪莉、孟杰、胡华桦、张佳楠

展开 >

武汉理工大学智能交通系统研究中心 武汉 430063

武汉理工大学重庆研究院 重庆 401120

武汉理工大学交通物联网技术湖北省重点实验室 武汉 430070

智能交通 路侧感知 目标跟踪 卡尔曼滤波 高精度地图 极化图

国家重点研发计划项目湖北省重点研发计划项目重庆市科技创新重大研发项目

2021YFB25011042022BAA082CSTB2020TIAD-STX0003

2024

交通信息与安全
武汉理工大学 交通计算机应用信息网

交通信息与安全

CSTPCD北大核心
影响因子:0.598
ISSN:1674-4861
年,卷(期):2024.42(3)
  • 10