首页|钢桥疲劳研究进展

钢桥疲劳研究进展

Research progresses on fatigue in steel bridges

扫码查看
系统归纳与剖析了钢桥疲劳研究新进展,总结了钢桥疲劳荷载、疲劳机理、抗疲劳设计方法、疲劳安全监测与评估、疲劳安全维护等方面的创新成果,探讨了钢桥建设与运维面临的技术挑战,展望了钢桥疲劳创新研究发展方向.研究结果表明:(1)已研发的与桥位处交通荷载特征、结构型式、设计使用年限匹配的车辆、列车、温度疲劳荷载模型,推进了长寿命桥梁抗疲劳设计理论的完善;(2)采用车辆-温度耦合疲劳应力的"冲浪"计算模型能够较好反映钢桥实际疲劳损伤度,温度与车辆耦合作用下的疲劳累积损伤度比仅考虑车辆作用时大10%~15%;(3)涌现了物理疲劳试验、数字疲劳试验和原位疲劳试验技术相融合的疲劳机理研究新范式,部分改变了传统疲劳认知,探明了畸变变形比、应力比对畸变疲劳行为与细节疲劳强度的影响规律,发现了实桥拉吊索服役大应力比条件下钢丝疲劳强度骤降现象,揭示了拉吊索钢丝强度等级由1 670 MPa提高到2 060 MPa时钢丝疲劳强度先增大、后下降的客观规律,明确了耐候钢桥细节腐蚀后疲劳强度并未下降的客观事实;(4)全桥多物理场、跨尺度和多概率疲劳孪生模型的构建已逐步实现,促进了数据原生、数据相生和虚实共生的钢桥疲劳元宇宙技术的诞生;(5)为解决钢桥细节带疲劳裂纹工作状态下的设计难题,需要把疲劳裂纹作为控制结构使用功能和安全的关键技术指标,采用损伤容限理论进行钢桥抗疲劳设计;(6)为突破裂纹感知和荷载获取的技术瓶颈,需将声发射、数字摄像/摄影、计算机视觉技术、深度学习等人工智能新技术深度融合,创建钢桥数字化疲劳荷载与损伤监测数据库,为钢桥疲劳机理、设计与评估方法研究提供完备信息;(7)为解决传统线性累积损伤评估模型无法对开裂细节疲劳寿命进行预测的技术难题,需构建基于数字孪生技术的钢桥数字疲劳评估模型,实现疲劳裂纹跨尺度、全程精准数字化描述,建立钢桥疲劳智能监测-孪生模拟-智能评估-智慧决策一体化数字疲劳评估平台;(8)冷维护技术能够对钢桥疲劳裂纹进行靶向、高效加固,且可实现对原结构零损伤或微损伤,能在不中断交通条件下实施,应用前景广阔;(9)针对钢桥疲劳损伤程度、性能提升与延寿目标需求,可灵活运用冷维护、热维护和冷-热混合维护技术,实现钢桥疲劳维护的强韧化、轻量化.
The research progresses of steel bridge fatigue were systematically generalized and analyzed,and the innovative achievements of steel bridge fatigue load,fatigue mechanism,anti-fatigue design method,fatigue safety monitoring and evaluation,and fatigue safety maintenance and other aspects were summarized.The technical challenges were deeply discussed for steel bridge construction and service maintenance,and the development tendencies were explored for the innovative research of steel bridges.Research results show that(1)the developed vehicle,train,and temperature fatigue load models are matched with the characteristics of traffic loads at bridge sites,structural types and design service life,promoting the improvement of the anti-fatigue design theory for long-lasting steel bridges.(2)The actual fatigue damage of steel bridges can be better reflected by the surfing calculation model derived by the vehicle-temperature coupling fatigue stress.The cumulative fatigue damage under the coupling effect of temperature and vehicles is 10%-15%higher than when only considering the effect of vehicles.(3)A new paradigm of fatigue mechanism research,which integrates physical fatigue test,digital fatigue test and in-situ fatigue test techniques,has emerged,partially altering the traditional understanding of fatigue.The influence laws of distortion-induced deformation ratio and stress ratio on the distortion-induced fatigue behavior and detail fatigue strength were investigated.It is found that the fatigue strength of cable steel wires plummets under the condition of high stress ratio in actual bridges.The objective law is revealed that when the strength grade of cable steel wires increases from 1 670 MPa to 2 060 MPa,the fatigue strength first increases and then decreases.The objective fact is clarified that the fatigue strength of weathering steel bridge details does not decrease after the corrosion.(4)The construction of whole bridge multi-physical field,multi-scale,and multi-probability fatigue twin model has been gradually realized,promoting the advent of steel bridge fatigue metaverse technology characterized by data originality,data interaction,and the symbiosis of virtuality and reality.(5)To solve the design issues of steel bridge details working with fatigue cracks,it is necessary to take the fatigue cracks as the key technical index controlling the structural function and safety,and to adopt the damage tolerance theory for the anti-fatigue design of steel bridges.(6)To break through the technical bottlenecks of crack perception and load acquisition,it is necessary to deeply integrate new artificial intelligence technologies such as acoustic emission,digital filming/photography,computer vision technology,and deep learning,and to create a digital monitoring database for fatigue load and damage of steel bridges,providing comprehensive information for researching on the fatigue mechanisms,design,and evaluation methods of steel bridges.(7)To solve the technical issue that traditional linear cumulative damage evaluation models can not predict the fatigue life of cracked details,it is necessary to establish a digital fatigue evaluation model for steel bridges based on digital twin technology.This will enable precise digital description of fatigue cracks across scales and throughout the entire process,and build an integrated digital fatigue evaluation platform for steel bridges,consisting of intelligent monitoring,twin simulation,intelligent evaluation,and smart decision.(8)Cold reinforcement technique can realize targeted and efficient reinforcement for fatigue cracks in steel bridges with zero or minimal damage to the original structure,allowing implementation without interrupting traffic flow,and has a broad application prospects.(9)Cold reinforcement,hot reinforcement,and cold-hot hybrid reinforcement techniques can be utilized flexibly for steel bridges with different fatigue damage degrees,performance enhancement requirements,and life extension goals,to achieve toughening and light-weighting in the fatigue maintenance of steel bridges.1 tab,33 figs,174 refs.

bridge engineeringsteel bridgelong-lastingvehicle fatigue load modeltemperature fatigue load modeldistortion-induced fatiguedamage tolerance design methoddigital fatigue testintelligent monitoringdigital fatigue evaluationcold reinforcementmetav

王春生、翟慕赛、王雨竹

展开 >

长安大学公路学院,陕西西安 710064

苏州科技大学土木工程学院,江苏苏州 215011

桥梁工程 钢桥 长寿命 车辆疲劳荷载模型 温度疲劳荷载模型 畸变疲劳 损伤容限设计方法 数字疲劳试验 智能监测 数字疲劳评估 冷维护技术 元宇宙

国家自然科学基金项目交通运输部科技创新人才推进计划陕西省创新能力支撑计划项目中央高校基本科研业务费专项资金项目

521781052018-0202019TD-022300102219309

2024

交通运输工程学报
长安大学

交通运输工程学报

CSTPCD北大核心
影响因子:1.306
ISSN:1671-1637
年,卷(期):2024.24(1)
  • 174