首页|智能网联环境下单交叉口车辆轨迹优化

智能网联环境下单交叉口车辆轨迹优化

扫码查看
为了提高信号灯前车辆的通行效率,改善交通流整体运行水平,本文从减少车辆延误和降低燃油消耗两个角度入手,在智能网联环境下,提出了一种车辆编组识别算法和针对编组头车的多目标线性轨迹优化模型(MOLP-pl).首先对智能驾驶员跟驰模型(IDM)进行改进,调整车辆状态,减少车辆随机到达状态下车辆速度和车头时距分布的差异,同时为后续MOLP-pl轨迹优化模型的运行提供先决条件.在此基础上,以车辆编组为优化单元,通过车辆编组识别算法识别编组头车和跟随车辆,将编组头车的行驶轨迹作为优化对象并建立相应的数学模型.为了提高车辆轨迹优化模型的求解效率和精度,对其进行线性化重构,采用线性求解器计算编组头车加速度,构建编组头车最佳时空轨迹,然后,利用IDM跟驰模型计算跟随车辆的行驶速度,从而使编组车辆最大效率的通过交叉口.最后,利用SUMO构建的仿真实验表明:本研究提出的车辆轨迹优化算法可显著提高信号灯前车辆的通行效率,在三种不同的交通饱和度条件下,相对于无速度引导场景,车辆延误分别降低了8.56%、12.42%、64.79%,燃油消耗分别降低了17.21%、18.34%、12.64%;相对于逻辑控制场景,延误分别降低了-1.31%、2.63%、60.83%,燃油消耗分别降低了2.47%、7.91%、2.28%.
Trajectory optimization of vehicles at isolated intersection in a connected and automated environment
To enhance traffic efficiency at signal lights from the perspective of reducing vehicle de-lay and minimizing fuel consumption,this study proposes a vehicle platoon identification algorithm and a Multi-objective Linear Programming Trajectory Optimization Model for Platoon-leading Vehi-cles(MOLP-pl).First,the Intelligent Driver Model(IDM)is improved to adjust the vehicle state,re-duce the differences in vehicle speed and headway distribution under random arrival conditions,and provide a prerequisite for the operation of the subsequent MOLP-pl trajectory optimization model.On this basis,the vehicle platoon identification algorithm is utilized to discern the leading and fol-lowing vehicles,with the trajectory of the former serving as the optimization objective for establish-ing a corresponding mathematical model.Then,the vehicle trajectory optimization model is linear-ized and reconstructed to enhance efficiency and accuracy.Subsequently,a Liner Solver is employed to determine the acceleration of the leading vehicle,facilitating the construction of an optimal spatio-temporal trajectory.The IDM model is utilized to calculate the speed of the following vehicles.The simulation experiments conducted using SUMO demonstrate that:1)The vehicle trajectory optimiza-tion algorithm proposed in this study can significantly improve traffic efficiency at intersections.Un-der three different levels of traffic saturation,vehicle delay reduced by 8.56%,12.42%,and 64.79%,while fuel consumption decreased by 17.21%,18.34%,and12.64%,respectively,compared to the sce-nario without vehicle speed guidance;2)The vehicle delay reduced by-1.31%,2.63%,and 60.83%respectively,while the fuel consumption decreased by 2.47%,7.91%,and 2.28%in comparison to the logic-based control strategy.

intelligent transportationvehicle trajectory optimizationtraffic efficiency and consump-tionplatoon identificationSimulation of Urban MObility

冯红艳、康雷雷、刘澜

展开 >

西南交通大学,交通运输与物流学院,成都 611756

综合交通运输智能化国家地方联合工程实验室,成都 611756

智能交通 车辆轨迹优化 交通效率与能耗 编组识别 SUMO

成都市重点研发支撑计划技术创新研发项目国家自然科学基金

2022-YF05-00302-SN61873216

2024

交通运输工程与信息学报
西南交通大学

交通运输工程与信息学报

CSTPCD
影响因子:0.446
ISSN:1672-4747
年,卷(期):2024.22(1)
  • 30