首页|基于Informer的车辆多意图运动轨迹预测

基于Informer的车辆多意图运动轨迹预测

扫码查看
自动驾驶汽车需要具备预测周围车辆轨迹的能力,以便做出合理的决策规划,提高行驶中的安全性和舒适性.为了能准确地预测汽车行驶的未来轨迹,本文运用神经网络的方法,设计了一种基于改进Informer模型的多意图轨迹预测模型.该模型使用编码器-解码器结构,输入数据为交通场景中的历史时域信息,输出为车辆的多意图预测轨迹.模型的编码器使用交互信息提取网络,根据特征间的依赖关系提取车辆交互信息,解码器根据编码器的输出特征向量预测表征多种驾驶意图的多意图轨迹.通过使用真实高速公路轨迹HighD数据集对模型进行训练、验证和测试,试验结果表明,本文提出的多意图轨迹预测模型能准确地预测出目标车辆的未来可能轨迹,并且在预测精度上优于基于长短时记忆网络的轨迹预测模型,增加交互信息提取网络使模型预测具有更高的准确率,输出多条表征不同驾驶意图的轨迹有利于反映客观真实轨迹分布,提高车辆主动安全性.本文还进行了通过预测轨迹判断换道意图的补充实验,通过本文模型预测轨迹判断换道意图准确率在换道前3s达到97%,从侧面反映出本文提出的模型预测轨迹的性能优异.
Vehicle multi-intention motion trajectory prediction based on Informer
Autonomous vehicles must accurately predict the trajectories of nearby vehicles to en-hance safety and comfort and facilitate rational decision-making.This study utilized a neural net-work approach to develop a multi-intention trajectory prediction model based on the Informer model and achieve accurate vehicle trajectory prediction.The model employs an encoder-decoder structure,using historical information from the traffic scene as input data and generating the vehicle's multi-in-tention-predicted trajectory as output.The encoder of the model utilizes an interactive information extraction network to extract vehicle interaction information by considering the dependency relation-ships.Subsequently,the decoder predicts a multi-intention trajectory that reflects various driving in-tentions based on the output of the encoder.Through training,validation,and testing on the HighD dataset of highway trajectories,the experimental results demonstrated the accurate prediction capabil-ity of the proposed multi-intention trajectory prediction model for target vehicles.Moreover,it out-performed the long short-term memory network-based trajectory prediction model in terms of accura-cy.The inclusion of an interactive information extraction network enhanced the accuracy of the mod-el predictions.Furthermore,generating multiple trajectories embodying distinct driving intentions contributes to objectively capturing the actual trajectory distribution,thereby enhancing vehicle safe-ty.In addition,a supplementary experiment was conducted to assess the lane change intention using predicted trajectories.The proposed model achieved 97%accuracy in predicting lane changes 3 s pri-or,indirectly indicating its outstanding trajectory prediction performance.

intelligent transportationtrajectory predictionattention mechanismautonomous vehicle

吴红兰、胡德富、郭旭周

展开 >

南京航空航天大学,民航学院,南京 211106

南京熊猫电子股份有限公司,南京 210002

智能交通 轨迹预测 注意力机制 自动驾驶

国家自然科学基金项目航空科学基金项目

U203320120181352009

2024

交通运输工程与信息学报
西南交通大学

交通运输工程与信息学报

CSTPCD
影响因子:0.446
ISSN:1672-4747
年,卷(期):2024.22(3)