首页|建成环境对城市机动车出行时空异质影响研究

建成环境对城市机动车出行时空异质影响研究

扫码查看
为提升城市机动车交通精细化管控水平,考虑需求管理和区域空间形状在城市机动车出行时空特性中的影响,基于建成环境7D要素构建建成环境对城市机动车出行时空异质影响模型,探究建成环境对城市机动车出行时空分布特性的作用机理.本文将上海市划分为225个交通小区,采集约50万辆机动车动态运行数据分析出行时空特性,在建成环境5D要素基础上,将轨道交通数据纳入考量,计算公交站点和线路密度指标评估公共交通可达性要素.为反映动态交通需求变化,考虑空间异质复杂性,加入需求管理要素和区域空间形状要素形成7D要素,分别采用停车场密度和交通小区空间形状指数指标作为衡量指标,并以机动车出行量作为因变量,建成环境7D要素作为自变量,进行相关性分析和多重共线性检验.应用最小二乘回归模型和地理加权回归模型、时空地理加权回归模型构建建成环境对城市机动车出行影响模型,针对工作日和非工作日两个时段的回归系数进行空间可视化分析,探究建成环境对城市机动车出行的时空异质性影响.结果表明,对比OLS、GWR和GTWR模型,GTWR模型具有更好的拟合效果.人口密度、公共交通线路密度和公共交通站点密度、到城市CBD的距离、停车场密度、交通小区空间形状指数对城市机动车出行为抑制作用,土地利用混合熵指数、道路网密度对城市机动车出行为促进作用.研究为优化城市机动车出行模式和区域交通精细化管理提供了依据.
Spatio-temporal heterogeneous effects of built environment on urban motorized travel
To enhance the precise management of urban motor vehicle traffic,this study examines the impacts of demand management and regional spatial configuration on the spatiotemporal characteris-tics of vehicle travel.A model was developed based on 7D built environment factors to analyze how these elements influence the spatiotemporal distribution of motor vehicle movements.This study fo-cuses on Shanghai and divides its urban areas into 225 traffic zones.The dynamic operating data of 500,000 motor vehicles in Shanghai were collected to analyze the spatiotemporal characteristics of travel.Based on the built environment's 5D elements,rail transit data are incorporated to calculate station and line density indicators,which assess public transportation accessibility.To reflect dynamic changes in traffic demand and account for spatial heterogeneity,demand management factors and re-gional spatial shape are introduced,forming the 7D elements.Parking lot density and the spatial shape index of traffic zones are used as evaluation metrics.Motor vehicle travel volume is the depen-dent variable,and the 7D elements of the built environment are the independent variables.Correlation and multicollinearity analyses are conducted.The impacts of the built environment on urban motor ve-hicle travel were modeled using ordinary least squares(OLS),geographically weighted regression(GWR),and spatiotemporal geographically weighted regression(GTWR)models.Spatial visualiza-tion analyses of the regression coefficients for weekdays and non-working days were conducted to ex-plore the spatiotemporal heterogeneity of these impacts.These results indicate that the GTWR model achieves a better fit than do the OLS and GWR models.In most areas,the population density,public transport route density,station density,distance to the city CBD,parking lot density,and spatial shape index of traffic zones inhibit urban motor vehicle travel,whereas the land use mix entropy index and road network density promote urban motor vehicle travel.The optimization of urban motor vehicle travel patterns provides a robust foundation for refined traffic management in diverse urban regions.

urban trafficspatiotemporal heterogeneityspatiotemporal geographically weighted re-gression(GTWR)modelurban motor vehicle travelbuilt environment

李聪颖、吴佳西、张洪涛、张泰、孟越洋、李微、国轶童

展开 >

西安建筑科技大学,城市发展与现代交通学院,西安 710055

长安大学,运输工程学院,西安 710064

中国电力工程顾问集团西南电力设计院有限公司,成都 610000

城市交通 时空异质性 时空地理加权回归模型 城市机动车出行 建成环境

2024

交通运输工程与信息学报
西南交通大学

交通运输工程与信息学报

CSTPCD
影响因子:0.446
ISSN:1672-4747
年,卷(期):2024.22(4)