首页|基于多粒度级联森林的高排放重型柴油车辆的识别方法

基于多粒度级联森林的高排放重型柴油车辆的识别方法

扫码查看
机动车尾气排放已成为主要的空气污染来源.车载诊断系统(on-board diagnostics,OBD)作为重要的机动车排放监管工具,可以获取与氮氧化物排放相关的关键信息.然而,由于OBD系统存在数据缺失和数据质量不高的问题,难以准确评估车辆NOx排放水平并有效筛查高排放车辆.本文提出了一种基于多粒度级联森林(multi-Grained Cascade Forest,gcForest)模型的高排放重型柴油车筛选方法.首先,使用Gumbel分布对重型柴油车辆的NOx/CO2数据进行概率分布对象拟合,以确定高排放阈值并标记高排放记录;其次,采用熵值法和多重共线性检验确定最优特征子集,并使用合成少数过采样技术(Synthetic Minority Over-sampling Technique,SMOTE)处理高排放样本和清洁样本比例不平衡问题;最后,构建gcForest模型用于分类排放超标数据.实验结果表明,该模型在识别高NOx排放重型柴油车辆方面具有有效性和适用性.该方法提升了利用OBD数据识别高排放车辆的可行性,为精准监管机动车排放提供了可靠的数据支撑.
Identification of high-emission heavy-duty diesel vehicles based on multigrained cascade forest
Vehicle exhaust emissions are a major source of air pollution.On-board diagnostic(OBD)systems are important regulatory tools for vehicle emissions because they can directly access key in-formation related to nitrogen oxide(NOx)emissions.However,owing to data unavailability and qual-ity issues in OBD systems,accurately assessing the NOx emission levels of vehicles and effectively screening high-emission vehicles are challenging.This study proposes a method for screening high-emission heavy-duty diesel vehicles(HDDVs)using the multigrained cascade forest model.First,the Gumbel distribution is used to fit the probability density distribution of the ratio to determine the high-emission threshold and label high-emission records.Subsequently,the multicollinearity test is performed in conjunction with the entropy method to determine the optimal feature subsets.Next,the synthetic minority oversampling technique(SMOTE)is used to address the imbalance between high-emitting and clean samples.Finally,the multigrained cascade forest model is constructed to classify data with emissions that exceed the standards.Comparative-analysis experiments verify the effective-ness and applicability of the model in identifying high NOx emissions from HDDVs,thus enhancing the feasibility of identifying high-emission vehicles and providing reliable data support for the pre-cise regulation of vehicle emissions.

information technologyhigh-emitting vehicle identificationmulti-Grained Cascade Forestheavy-duty diesel vehicleon-board diagnostics systemGumbel distribution

廖琳蔚、杨卓倩、杨鸿泰、韩科

展开 >

西南交通大学,交通运输与物流学院,成都 611756

西南交通大学,经济管理学院,成都 610031

信息技术 高排放车辆识别 多粒度级联森林模型 重型柴油车 车载诊断系统 Gumbel分布

2024

交通运输工程与信息学报
西南交通大学

交通运输工程与信息学报

CSTPCD
影响因子:0.446
ISSN:1672-4747
年,卷(期):2024.22(4)