首页|基于参数优化VMD和改进GoogLeNet的滚动轴承故障诊断

基于参数优化VMD和改进GoogLeNet的滚动轴承故障诊断

扫码查看
[目的]深度学习方法在滚动轴承故障诊断领域的应用十分有效,但传统神经网络由于采用单一尺度的卷积核而无法多尺度提取特征,且并未考虑到不同特征在故障诊断中的重要程度,滚动轴承信号在噪声干扰下的故障特征提取较为困难。为此,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)降噪,并用以注意力机制改进的GoogLeNet网络进行诊断的滚动轴承故障诊断方法。[方法]以局部极小包络熵为适应度函数,采用麻雀搜索算法(Sparrow Search Algorithm,SSA)对VMD参数组合[K,α]进行寻优;利用优化后的VMD算法分解轴承振动信号,得到若干模态分量,根据包络熵和峭度筛选故障特征丰富的模态分量,进行信号重构;以重构信号构建特征矩阵并输入经改进的GoogLeNet网络中完成诊断。[结果]试验结果表明,在不同噪声背景下,该方法诊断准确率为95。5%~99。8%,比其他方法噪声鲁棒性更好。
Rolling bearing fault diagnosis based on parameter optimized VMD and improved GoogLeNet
[Objective]The application of deep learning methods in the field of rolling bearing fault diagnosis is very effective,but traditional neural networks cannot extract features at multiple scales due to the use of a single scale convolution kernel,and do not consider the importance of different features in fault diagnosis.Therefore,it is difficult to extract fault features of rolling bearing signals under noise interference.A rolling bearing fault diagnosis method based on parameter-optimized variational mode decomposition(VMD)noise reduction and GoogLeNet network with improved attention mechanism was proposed.[Methods]The local minimal envelope entropy was used as the fitness function,and the sparrow search algorithm(SSA)was used to optimize the VMD parameter combination;the optimized VMD algorithm was used to decompose the bearing vibration signals to obtain several modal components,and the signals were reconstructed by filtering the modal components with rich fault features according to the envelope entropy and kurtosis;the reconstructed signals were used to construct the feature matrix and input into the improved GoogLeNet network to complete the diagnosis.[Results]The test results show that the diagnostic accuracy of the method is 95.5%to 99.8%under different noise backgrounds,which is better than other methods in terms of noise robustness.

Rolling bearingVariational mode decompositionSparrow search algorithmConvolutional neural networkFault diagnosisAttention mechanism

李浩燃、刘德平

展开 >

郑州大学 机械与动力工程学院,郑州 450001

滚动轴承 变分模态分解 麻雀搜索算法 卷积神经网络 故障诊断 注意力机制

2025

机械传动
郑州机械研究所 中国机械通用零部件工业会齿轮分会 中国机械工程学会

机械传动

北大核心
影响因子:0.534
ISSN:1004-2539
年,卷(期):2025.49(1)