首页|基于GA-DE-PSO优化算法的停车场车辆高效引导研究

基于GA-DE-PSO优化算法的停车场车辆高效引导研究

扫码查看
传统停车引导方法受到寻优搜索算法本身缺陷的影响,设计的引导路径无法实现全局最优.针对该点不足设计了一种基于GA-DE-PSO优化算法的停车场车辆高效引导方法.利用栅格法建立停车场环境栅格地图.在原有停车时间最小化目标的基础上,增加一个避碰目标函数,由此建立一个多目标函数模型.将GA与DE 融合到一起后利用GA-DE 优化PSO算法,通过GA-DE-PSO优化求解停车场车辆最佳引导方案.结果表明与三种传统方法相比,GA-DE-PSO优化算法求出的方案所耗费的停车时间更短、效率更高,能够引导驾驶员快速识别出最近车位.
Research on Efficient Vehicle Guidance in Parking Lot Based on GA-DE-PSO Optimization Algorithm
The traditional parking guidance methods are affected by the inherent defects of the optimization search algorithm,and the designed guidance path often cannot achieve global optimization.In view of the short-comings of this point,an efficient vehicle guidance method based on GA-DE-PSO optimization algorithm is designed for parking lots.In this study,the grid method is used to establish a grid map of the parking lot envi-ronment.On the basis of the original goal of minimizing parking time,a collision avoidance objective function is added to establish a multi-objective function model.After integrating GA and DE,GA-DE is used to optimize the PSO algorithm,and GA-DE-PSO is used to optimize the optimal guidance scheme for parking lot vehi-cles.The results show that compared with the three traditional methods,the GA-DE-PSO optimization algo-rithm tekes a shorter parking time,indicating that this method is more efficient and can guide drivers to complete parking behaviors more quickly.

GA-DE-PSO optimization algorithmparking lotenvironmental grid mapmulti objective functionefficient methods for vehicles

罗小军、黄燧福、王筱珍

展开 >

广州南洋理工职业学院 智能工程学院,广东 广州 510800

广州城市理工学院 电气工程学院,广东 广州 510800

GA-DE-PSO优化算法 停车场 环境栅格地图 多目标函数 车辆高效引导方法

广东省普通高等学校青年创新人才项目(2020)

2020KQNCX245

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(2)
  • 13