首页|基于GA-DE-PSO优化算法的停车场车辆高效引导研究

基于GA-DE-PSO优化算法的停车场车辆高效引导研究

Research on Efficient Vehicle Guidance in Parking Lot Based on GA-DE-PSO Optimization Algorithm

扫码查看
传统停车引导方法受到寻优搜索算法本身缺陷的影响,设计的引导路径无法实现全局最优.针对该点不足设计了一种基于GA-DE-PSO优化算法的停车场车辆高效引导方法.利用栅格法建立停车场环境栅格地图.在原有停车时间最小化目标的基础上,增加一个避碰目标函数,由此建立一个多目标函数模型.将GA与DE 融合到一起后利用GA-DE 优化PSO算法,通过GA-DE-PSO优化求解停车场车辆最佳引导方案.结果表明与三种传统方法相比,GA-DE-PSO优化算法求出的方案所耗费的停车时间更短、效率更高,能够引导驾驶员快速识别出最近车位.
The traditional parking guidance methods are affected by the inherent defects of the optimization search algorithm,and the designed guidance path often cannot achieve global optimization.In view of the short-comings of this point,an efficient vehicle guidance method based on GA-DE-PSO optimization algorithm is designed for parking lots.In this study,the grid method is used to establish a grid map of the parking lot envi-ronment.On the basis of the original goal of minimizing parking time,a collision avoidance objective function is added to establish a multi-objective function model.After integrating GA and DE,GA-DE is used to optimize the PSO algorithm,and GA-DE-PSO is used to optimize the optimal guidance scheme for parking lot vehi-cles.The results show that compared with the three traditional methods,the GA-DE-PSO optimization algo-rithm tekes a shorter parking time,indicating that this method is more efficient and can guide drivers to complete parking behaviors more quickly.

GA-DE-PSO optimization algorithmparking lotenvironmental grid mapmulti objective functionefficient methods for vehicles

罗小军、黄燧福、王筱珍

展开 >

广州南洋理工职业学院 智能工程学院,广东 广州 510800

广州城市理工学院 电气工程学院,广东 广州 510800

GA-DE-PSO优化算法 停车场 环境栅格地图 多目标函数 车辆高效引导方法

广东省普通高等学校青年创新人才项目(2020)

2020KQNCX245

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(2)
  • 13