首页|基于S-EWT的带式输送机声音信号去噪算法研究

基于S-EWT的带式输送机声音信号去噪算法研究

扫码查看
针对复杂工作环境下带式输送机有效声音信号提取难的问题,拟提出一种改进经验小波变换算法,利用插值法对傅里叶频谱重建,计算各个频段的局部功率,设置阈值优化分割频段,根据分解的调幅调频信号重构声音信号,提取声音信号特征参数,输入支持向量机进行故障分类验证算法可行性.通过对港口采集的带式输送机声音信号进行仿真实验,结果表明,改进算法在克服原有缺陷的同时,去噪能力上提升了 25%左右,故障诊断平均准确率达到96%.
Research on Noise Reduction Algorithm of Belt Conveyor Sound Signal Based on Improved Empirical Wavelet Transform
This paper proposes an improved empirical wavelet transform algorithm to extract effective sound of belt conveyor in complex working environment.The improved method reconstructs the Fourier spectrum based on the spline interpolation and calculates the local power of each frequency band,the adaptive spectrum segmen-tation is optimized by threshold value.Then,the sound signal is reconstructed according to the decomposed AM-FM signal and from which the characteristic parameters are extracted and the support vector machine is input-ted to verify the feasibility of the fault classification algorithm.Through the simulation experiment of the belt con-veyor sound signal collected in the port is conducted,the results show that the improved algorithm can not only overcome original defects,but also improve the denoising ability of sound signal by about 25%,and the average accuracy of fault diagnosis reaches 96%.

belt conveyorimproved empirical wavelet transformfeature extractionfault diagnosis

李磊、张启虎、李明

展开 >

曲阜师范大学工学院,山东 日照 276825

带式输送机 改进经验小波变换 特征提取 故障诊断

山东省自然科学基金面上项目

ZR2020MF092

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(3)
  • 13