首页|基于改进YOLOv5s算法的草莓病虫害检测研究

基于改进YOLOv5s算法的草莓病虫害检测研究

扫码查看
草莓的生长容易受到多种病虫害的影响,为了快速、准确地检测草莓植株在生长过程中所受病虫害的情况,通过采集草莓生长过程中的图像信息,应用YOLOv5s算法进行分析处理,将CBAM注意力机制集成到YOLOv5s模型中,用以增强模型的感受力和表达能力,通过选择SIOU损失函数替代GIOU损失函数进一步加快模型收敛.研究结果表明,经过改进的算法模型准确率达到了 95.2%,召回率提升至97.2%,平均精度均值提高至98.5%.一定程度上满足草莓病虫害的检测.
Research on Strawberry Disease and Pest Detection Based on Enhanced YOLOv5s Algorithm
Strawberry growth is susceptible to a variety of diseases and pests.In order to quickly and accu-rately detect the diseases and pests suffered by strawberry plants during the growth process,this paper collects image information during the growth process of strawberry,applies YOLOv5s algorithm for analysis and process-ing,and integrates CBAM attention mechanism into YOLOv5s model.In order to enhance the sensibility and ex-pressiveness of the model,SIOU loss function is selected to replace GIOU loss function to accelerate the conver-gence of the model.The results show that the accuracy of the improved algorithm model reaches 95.2%,the re-call rate increases to 97.2%,and the average accuracy increases to 98.5%.To some extent,it can satisfy the detection of strawberry pests and diseases.

pest and disease detectionYOLOv5sCBAMSIOU loss function

马赛、丁健、张火强、汪慧

展开 >

合肥大学先进制造工程学院,安徽合肥 230601

病虫害检测 YOLOv5s CBAM SIOU损失函数

安徽省大学生创新创业训练计划(2023)

S202311059261X

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(3)
  • 12