首页|改进DBO-BP算法在火灾探测中的应用

改进DBO-BP算法在火灾探测中的应用

扫码查看
针对BP神经网络在高层建筑火灾探测中准确率低和误报、漏报等问题,提出一种改进蜣螂优化算法(DBO)优化BP神经网络的方法来实现火灾探测.BP神经网络的输入为CO浓度、温度和烟雾浓度,输出则为明火、阴燃火和无火.首先,将Tent映射加到蜣螂优化算法的初始种群生成中进行改进,从而生成一个分布均匀、多样性好的初始种群;其次,用改进的蜣螂算法优化BP神经网络的权重和阈值两个参数,构建出最优的IDBO-BP火灾预测模型;最后,将BP模型、DBO-BP模型和IDBO-BP三种模型进行仿真对比实验.仿真结果显示,IDBO-BP火灾预测模型相较于BP和DBO-BP模型,能够更快更精确地进行火灾探测,准确率提升到了98.99%,加强了火灾探测的可靠性.
Application of Improved DPO-BP Algorithm in Fire Detection
In order to solve the problems of low accuracy,false alarm and underreporting of BP neural net-work in fire detection of high-rise buildings,an improved dung beetle optimization algorithm(DBO)was pro-posed to optimize BP neural network to achieve fire detection.The input of BP neural network is the concentration of CO,temperature and the concentration of smoke,and the output is open fire,smoldering fire and non-flame.Firstly,tent mapping was added to the initial population generation of dung beetle optimization algorithm to im-prove,so as to generate an initial population with uniform distribution and good diversity.Then the weight and threshold parameters of BP neural network were optimized by the improved dung beetle algorithm,and the opti-mal IDBO-BP fire prediction model was constructed.Finally,The simulation comparative experiments were conducted on the BP model,DBO-BP model,and IDBO-BP model.Simulation results show that IDBO-BP fire prediction model can detect fire faster and more accurately than BP and DPO-BP model,and the accuracy rate is improved to 98.99%,which strengthens the reliability of fire detection.

BP neural networkfire detectiondung beetle optimization algorithm

徐文鑫、刘为国、朱洪波

展开 >

安徽理工大学 电气与信息工程学院,安徽 淮南 232001

BP神经网络 火灾探测 蜣螂优化算法

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(4)