首页|基于改进YOLOv5的番茄成熟度检测方法

基于改进YOLOv5的番茄成熟度检测方法

扫码查看
番茄成熟度的检测对番茄自动化采摘具有重要的意义和价值,针对目前检测识别精度低以及漏检等问题,提出了一种基于改进YOLOv5 的番茄成熟度检测方法.先在原始的YOLOv5 加入SE注意力模块和BiFPN网络,使其能够同时关注通道和空间中小目标物体的特征,从而增强网络特征的融合能力.再用FReLU激活函数将原来网络结构中的激活函数替换,可以实现像素级的空间建模能力,进一步提高检测精度,增加了该模型的鲁棒性.通过试验表明,改进的YOLOv5 模型的精确率、召回率和平均精度均值分别提升了 4.8%、4.0%和 3.0%.虽然改进后的模型参数量与计算量增加了0.2M和0.6G,但是提升了不同成熟度番茄的检测效果,可以为自动化采摘提供技术支持.
Tomato Maturity Detection Method Based on Improved YOLOv5
The detection of tomato ripeness is of great significance and valuable for automated tomato harves-ting.To address the current issues of low detection,recognition accuracy and missed detections,a tomato ripe-ness detection method based on improved YOLOv5 is proposed.Firstly,SE attention module and BiFPN network are added to the original YOLOv5,enabling it to simultaneously focus on the features of small target objects in both channel and space,thereby enhancing the fusion ability of network features.Secondly,replacing the activa-tion function in the original network structure with the FReLU activation function can achieve pixel level spatial modeling ability,further improve the detection accuracy,and increase the robustness of the model.Experiments have shown that the improved YOLOv5 model has improved accuracy,recalland average accuracy by 4.8%,4.0%,and 3.0%respectively.Although the improved model has increased the number of parameters and com-putational complexity by 0.2M and 0.6G,it has improved the detection of tomatoes with different maturity levels and can provide technical support for automated picking.

maturityobject detectionattention mechanismFReLU activation function

张德龙、刘春辉、艾和金、宫超、查文珂

展开 >

安徽科技学院 机械工程学院,安徽 滁州 233100

安徽爱瑞特新能源专用汽车股份有限公司,安徽 芜湖 241200

成熟度 目标检测 注意力机制 FReLU激活函数

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(4)