首页|基于云雾网络的低延迟QoS路由优化策略研究

基于云雾网络的低延迟QoS路由优化策略研究

扫码查看
移动通信技术的快速发展催生了许多新的产业和商业机会,导致网络电话流量显著增加.然而,由于网络资源和带宽有限,如何确保通话服务质量(QoS)仍然是一个挑战.传统的网络架构设计由于耦合问题无法有效满足不同服务项目的多样化QoS需求.为了解决这个挑战,深入研究了云和雾网络以及低延迟场景下的QoS路由优化策略.通过实验仿真,发现在处理1000 兆字节(MB)的数据时,低延迟模型优于云计算网络.使用低延迟模型需要18.47 秒,使用云计算网络需要30.42 秒,低延迟模型处理时间减少了11.95 秒.利用低延迟模型可以提高网络吞吐量和操作速度,同时最小化数据包之间的丢包率,这种模型在提高网络性能和用户体验方面起着关键作用.
Research on Low latency QoS Routing Optimization Strategies Based on Cloud and Mist Networks
The rapid development of mobile communication technology has given rise to many new industries and businesses opportunities,leading to a significant increase in network telephone traffic.However,due to lim-ited network resources and bandwidth,ensuring the quality of call service(QoS)remains a challenge.Tradi-tional network architecture design cannot effectively meet the diverse QoS requirements of different service pro-jects due to coupling issues.To address this challenge,this article delves into QoS routing optimization strategies in cloud and fog networks as well as low latency scenarios.Through experimental simulation,it finds that the low latency model outperforms cloud computing networks when processing 1000 megabytes(MB)of data.Using a low latency model takes 18.47 seconds,using a cloud computing network takes 30.42 seconds,and the process-ing time of the low latency model is reduced by 11.95 seconds.The use of low latency models can improve net-work throughput and operation speed,while minimizing packet loss rate between packets.This model plays a crucial role in improving network performance and user experience.

service qualitycloud computing networklow latencysingle fog node

许年芳、褚诗伟

展开 >

安徽职业技术学院 计算机与信息技术学院,安徽 合肥 231200

安徽大学 电子信息工程学院,安徽 合肥 231200

服务质量 云计算网络 低延迟 单雾节点

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(4)