首页|基于小波和Bagging-PNN网络的柴油机轴承故障研究

基于小波和Bagging-PNN网络的柴油机轴承故障研究

扫码查看
针对柴油机故障诊断速度慢、诊断模型准确率低等问题.提出一种基于小波和Bagging-PNN网络的柴油机轴承故障诊断法.首先,利用时域、频域对采样后的故障数据进行分析,通过小波分析对数据进行去噪处理;然后,将Bagging算法与概率神经网络(Probabilistic Neural Network,PNN)进行融合,通过多个PNN分类器以相同的方式进行投票建立柴油机轴承故障分类模型,提高诊断准确度;最后,通过对比实验表明基于小波和Bagging-PNN的柴油机轴承故障诊断方法的识别准确性有明显提高.
A Study of Diesel Engine Bearing Failure Based on Wavelet and Bagging-PNN Networks
Aiming at the problems of slow speed and low accuracy of diagnostic model for diesel engine fault,a diesel engine bearing fault diagnosis method based on wavelet and Bagging-PNN network is proposed.First,the sampled fault data are analyzed in time and frequency domains,and the data are denoised by wavelet analysis;then,the Bagging algorithm is fused with Probabilistic Neural Network(PNN),and the data obtained by multiple PNN classifiers voting in the same way are used as the final classification results.The output of the denoised data is used to establish a diesel engine bearing fault classification model to improve the diagnostic ac-curacy;finally,the comparison experiments show that the recognition accuracy of the wavelet and Bagging-PNN based diesel engine bearing fault diagnosis method is significantly improved.

diesel engine bearingsfault diagnosisBaggingPNNwavelet analysis

丁坤岭、王晓峰、舒航、徐可、孙贾梦

展开 >

重庆科技大学 电子与电气工程学院,重庆 401331

重庆科技大学 数理科学学院,重庆 401331

柴油机轴承 故障诊断 Bagging PNN 小波分析

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(7)