首页|基于改进YOLOV5的头盔佩戴检测算法研究

基于改进YOLOV5的头盔佩戴检测算法研究

扫码查看
针对目前电动自行车头盔小目标检测正确识别率低、检测速度差且效率低等问题,提出一种改进YOLOV5 的电动自行车头盔检测算法.首先,针对各类头盔的大小尺寸以及样式的不同,引入K-means++算法对头盔初始锚框选定,增加网络收敛速度,解决因初始锚点选择不当而造成的模型训练缓慢;其次,引入空间通道注意力机制(CBAM),可兼顾通道以及空间两个维度,提高网络特征学习能力,在Neck部分使用双向特征金字塔网络结构(BiFPN)代替原先的特征提取结构;最后,修改GIoU损失函数作为损失函数来提升模型的检测精度.实验表明,相较于原始的YOLOV5 模型相比,改进的YOLOV5 算法模型的Precision(精确率)提高了 3.7%,Recall(召回率)提高了5.9%,mAP(均值平均精度)提升了3.1%,满足了对头盔检测精度的要求,在某种程度上间接降低了交通事故率.
Research on the Helmet Wearing Detection Algorithm of Improved YOLOV5
In view of the current problems of low target detection accuracy,poor detection speed and low efficiency in the hel-met detection of electric bicycles,this article proposes an improved electric bicycle helmet detection algorithm based on YOLOV5.Firstly,aiming at the different sizes and styles of helmets,the K-means++algorithm is introduced to select the initial anchor boxes for helmets,which increases the network convergence speed and solves the problem of slow model training caused by improper initial anchor point selection.At the same time,the spatial channel attention mechanism(CBAM)is introduced to take into account both channel and spatial dimensions,improving network feature learning ability.In the Neck part,the bidirectional feature pyramid net-work structure(BiFPN)is used instead of the original feature extraction structure.Finally,the modified GIoU loss function is used as the loss function to improve model detection accuracy.Experiments show that compared with the original YOLOV5 model,the improved YOLOV5 algorithm model has increased precision by3.7%,recall by5.9%,mAPby3.1%,and meets the requirement of helmet detection accuracy,indirectly reducing the traffic accident rate to some extent.

CNNYOLOV5loss function GIOUK-means++BiFPNCBAM

孙海川、张盈、丁毅、梅腱、胡国华

展开 >

合肥大学 先进制造工程学院,安徽 合肥 230000

CNN YOLOV5 损失函数GIoU K-means++ BiFPN CBAM

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(8)