首页|基于改进蚁群算法的移动机器人路径规划研究

基于改进蚁群算法的移动机器人路径规划研究

扫码查看
针对传统蚁群算法迭代次数多,规划路径长且存在冗余拐点等问题,提出一种改进蚁群算法.首先在启发函数中引入角度因子,并以局部影响系数、全局影响系数和角度影响系数表征局部影响因子、全局影响因子和角度影响因子的重要程度.同时改进信息素挥发系数和信息启发因子,增强信息素的引导作用.其次为了使算法在初期搜索时更具指引性,根据地图已知信息和优选路径特征初始化信息素浓度矩阵.最后对改进算法规划路径进行二次优化,减少路径长度和转弯次数.为验证算法有效性,使用Matlab在栅格地图中对改进算法进行仿真,结果表明改进算法能够以更少的迭代次数获得长度更短、转弯次数更少的最优路径.
Research on Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm
Aiming at the problems of the traditional ant colony algorithm,such as high iteration times,long planning paths,and redundant inflection points,an improved ant colony algorithm is proposed.Firstly,the angle factor is introduced into the heuristic function,and the importance degree of local influence factor,global influence factor and angle influence factor are characterised by local influence coefficient,global influence coefficient and angle influence coefficient.At the same time,the pheromone volatility coefficient and the information heuristic factor are improved to enhance the guiding effect of the pheromone.Secondly,in order to make the algorithm more directive during the initial search,the pheromone concentration matrix is initialised according to the known information of the map and the optimized path features.Finally,the improved algorithm is used to plan the path for secondary opti-mization,reducing the length of the path and the number of turns to reduce the path length and the number of turns.To verify the effectiveness of the algorithm,Matlab is used to simulate the improved algorithm in the raster map,and the results show that the im-proved algorithm can obtain the optimal path with shorter length and fewer turns with fewer iterations.

ant colony algorithmangle factorpheromone guidancepheromone concentration matrixsecondary optimization

张僮潼、魏树国、周妍

展开 >

铜陵学院 机械工程学院,安徽 铜陵 244061

工程液压机器人安徽普通高校重点实验室,安徽 铜陵 244061

蚁群算法 角度因子 信息素引导 信息素矩阵 二次优化

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(8)