首页|基于改进YOLOv5s的课堂学生行为检测算法设计与实现

基于改进YOLOv5s的课堂学生行为检测算法设计与实现

扫码查看
针对在复杂的课堂环境中,传统的目标检测算法出现的漏检和误检问题,提出一种改进的YOLOv5s目标检测算法,旨在提高在课堂环境中对学生行为的检测准确性.首先,创建包含六种行为的学生行为数据集;其次,在Backbone和Neck部分添加多头自注意力机制,增强模型对课堂图像中复杂拥挤的空间关系的理解能力;最后,将目标检测头部中计算边框损失的CIoU替换为更加全面的SIoU.实验结果表明,改进后的模型相较于原模型的平均精度提高3.9%,召回率提高2.6%,提升了模型对目标的准确检测能力.
Design and Implementation of Classroom Student Behavior Detection Algorithm Based on Improved YOLOv5s
Aiming at the problems of missed detection and false detection that occur in complex classroom environments and dense student targets,this paper proposes a student classroom behavior detection method that improves the YOLOv5 target detection algorithm.Firstly,a student behavior data set containing six behaviors is created;secondly,a multi-head self-attention mechanism is added to the Backbone and Neck parts to enhance the model's ability to understand complex and crowded spatial relationships in classroom images;finally,the detection head is used to calculate the border of the lost CIoU is replaced by a more comprehensive SIoU.Experimental results show that compared with the original model,the average precision of the improved model is increased by 3.9%,and the recall rate is increased by 2.6%,which improves the model's ability to accurately detect targets.

student behaviormulti-head self-attention mechanismSIoU loss function

刘晨怡、邢雪凯、奚文欣、胡国华、连顺

展开 >

合肥大学先进制造工程学院,安徽 合肥 230601

科大讯飞股份有限公司,安徽 合肥 230088

学生行为检测 多头自注意力机制 SIoU损失函数

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(9)