首页|融合EMA注意力机制的轻量级玉米雄穗检测

融合EMA注意力机制的轻量级玉米雄穗检测

扫码查看
玉米雄穗对于玉米产量以及优良育种有着重要作用,为提升复杂田间环境下对抽雄期玉米雄穗的检测精度和速度,提出一种融合高效多尺度注意力机制的轻量级目标检测模型YOLOv5-EMM.通过嵌入高效多尺度注意力机制(EMA)模块、替换MobileNetV3轻量级骨干网络、优化MPDIoU损失函数及采用BiFPN优化颈部网络改进YOLOv5基础模型.试验结果表明,YOLOv5-EMM网络平均精确度达到97.8%,比改进前提高了 2.7%,模型参数量低至3.31M,计算量也降低了 51%.改进模型对复杂田间环境玉米雄穗有着较好的检测效果,可为玉米生长状态监测提供技术支持.
Lightweight Maize Tassel Detection Incorporating EMA Attention Mechanism
Maize tassels play a crucial role in maize yield and excellent breeding.To improve the detection accuracy and detec-tion speed of corn tassels during the tasseling period in complex field environments,this paper proposes a lightweight object detec-tion model YOLOv5-EMM that integrates efficient multi-scale attention mechanism.By embedding an efficient multi-scale attention mechanism(EMA)module,replacing the MobileNetV3 lightweight backbone network,optimizing the MPDIoU loss function,and using BiFPN to optimize the neck network,the YOLOv5 model is improved.The experimental results show that the YOLOv5 EMM network has an average accuracy of 97.8%,which is 2.7%higher than before improvement.The number of model parameters is as low as 3.31M,and the amount of computation is also reduced by 51%.The YOLOv5 EMM model has a good detection effect on maize tassels in complex field environments,and can provide technical support for monitoring maize growth.

object detectiondeep learningcorn tasselscomplex field environment

吴伟、陈伟、孙容、刘路

展开 >

安徽农业大学工学院,安徽 合肥 230036

安徽省智能农机装备工程实验室,安徽 合肥 230036

目标检测 深度学习 玉米雄穗 复杂田间环境

2024

黑龙江工业学院学报(综合版)
鸡西大学

黑龙江工业学院学报(综合版)

影响因子:0.211
ISSN:1672-6758
年,卷(期):2024.24(9)