首页|基于深度学习的水面清洁机器人的设计与实现

基于深度学习的水面清洁机器人的设计与实现

扫码查看
针对现有的水面清洁装置大多无法实现全水面自主清洁的问题,设计了一种基于深度学习的水面清洁机器人.该机器人配合双螺旋桨电动机驱动、连杆聚拢垃圾结构、曲轴递推结构,能较好地完成水面自主清洁巡航.配合视觉系统,应用卷积神经网络进行训练,通过骨干网络、Ancher-Free检测头和损失函数等算法,使用YOLO PT模型,经过300次迭代,在自建数据集中,垃圾识别准确率达87%以上.该机器人同时提供方位数据,可实现无人自主系泊,为城市小型水面的治理提供了解决方案,并提高了垃圾回收利用率.
Design and Implementation of Water Surface Cleaning Robot Based on Deep Learning
Most of the existing water surface cleaning devices cannot achieve autonomous cleaning for the entire water surface.This paper proposes a deep learning-based water surface cleaning robot.The robot is equipped with dual propeller motors,a link gathering garbage structure,and a crank push structure,which can complete autonomous cleaning and cruising of the water surface.Together with the vision system,it applies the convolutional neural network for training,and through the algorithms of backbone network,Ancher-Free detection head and loss function,it uses the YOLO PT model,and after 300 iterations,it realizes the garbage recognition accuracy of more than 87%in the self-constructed dataset.The robot also provides orientation data,which can achieve automatic mooring,providing a solution for the management of small urban water surfaces,promoting the utilization and recycling of garbage.

water surface cleaning robotmachine visiongarbage detectionYOLOautonomous mooring

韩诗禹、马孟晨、路志远、刘伟祺、孙静雯、宁秋丽

展开 >

哈尔滨理工大学机械动力工程学院,哈尔滨 150080

水面清洁机器人 机器视觉 垃圾检测 YOLO 自主系泊

2025

机械工程师
黑龙江省机械科学研究院 黑龙江省机械工程学会

机械工程师

影响因子:0.136
ISSN:1002-2333
年,卷(期):2025.(1)