首页|基于IPSO-BPNN的超差孔径向增材搅拌摩擦修复接头抗拉强度预测

基于IPSO-BPNN的超差孔径向增材搅拌摩擦修复接头抗拉强度预测

扫码查看
利用改进粒子群(Improved Particle Swarm Optimization,IPSO)算法优化了反向传播神经网络(Back Propagation Neural Network,BPNN)的权值和阈值.以旋转速度、下扎速度、停留时间为输入,抗拉强度为输出,构建了3×6×1三层拓扑结构的2024-T4铝合金超差孔径向增材搅拌摩擦修复接头抗拉强度的IPSO-BPNN预测模型.结果表明,优化后的IPSO-BPNN模型具有较高的预测精度和收敛速度,相对预测误差为1.01%.
Tensile Strength Prediction of Radial-additive Friction Stir Repaired Out-of-tolerance Hole by IPSO-BPNN
The improved particle swarm optimization(IPSO)algorithm is used to optimize the back propagation neural network(BPNN)weights and thresholds.The IPSO-BPNN tensile strength prediction model for the radial-additive friction stir repairing joints of out-of-tolerance hole of 2024-T4 aluminum alloy with 3×6×1 three layers topology is established with rotating velocity,plunge speed and dwelling time as input and tensile strength as output.The results show that the optimized IPSO-BPNN prediction model has high prediction accuracy and convergence speed,and the relative prediction error is 1.01%.

radial-additive friction stir repairing2024-T4 aluminum alloyIPSO-BPNN prediction modeltensile strength

武芳竹、刘炳宏、李雨亭、李浩然、胡为

展开 >

沈阳航空航天大学航空先进连接技术重点学科实验室,沈阳 110136

径向增材搅拌摩擦修复 2024-T4铝合金 IPSO-BPNN预测模型 抗拉强度

2025

机械工程师
黑龙江省机械科学研究院 黑龙江省机械工程学会

机械工程师

影响因子:0.136
ISSN:1002-2333
年,卷(期):2025.(1)