首页|集成深度强化学习与注意力机制的车间调度方法

集成深度强化学习与注意力机制的车间调度方法

扫码查看
柔性作业车间调度问题是制造业中一个典型的调度问题.在复杂多变的生产环境中,传统的调度方法难以同时保证生产效率和质量.文中提出了一种针对动态柔性作业车间调度问题的端到端深度强化学习方法.为了提高解的质量,构造了一个基于注意力机制的异构图神经网络作为决策模块,使强化学习代理可以在其解空间中搜索.利用近端策略优化算法对网络模型进行训练,训练后的模型可用于生成最优调度策略.通过3组著名的FJSP基准算例进行测试,实验结果表明,该方法在解的质量和运行时间上均优于调度规则和元启发式算法.
Shop Floor Scheduling Method by Integrating Deep Reinforcement Learning and Attention Mechanism
The flexible job shop scheduling problem is a typical scheduling problem in the manufacturing industry.In a complex and changeable production environment,traditional scheduling methods are difficult to ensure both production efficiency and quality.In this paper,an end-to-end deep reinforcement learning method for dynamic flexible job shop scheduling problem is proposed.In order to improve solution quality,an Heterogeneous Graph Attention Network(HGAN)is constructed as a decision module,allowing reinforcement learning agents to be searched in its solution space.The network model is trained by the Proximal Policy Optimization(PPO)algorithm,and the trained model can be used to generate the optimal scheduling strategy.Experimental results on random instances and benchmark instances show that the proposed method is superior to the scheduling rules and meta-heuristics in terms of solution quality and running time.

shop floor schedulingpriority scheduling rulegraph neural networkattention mechanismproximal policy optimization

肖航、石宇强

展开 >

西南科技大学制造科学与工程学院,四川 绵阳 621010

车间调度 调度规则 图神经网络 注意力机制 近端策略优化

2025

机械工程师
黑龙江省机械科学研究院 黑龙江省机械工程学会

机械工程师

影响因子:0.136
ISSN:1002-2333
年,卷(期):2025.(1)