首页|Evaluation on Configuration Stiffness of Overconstrained 2R1T Parallel Mechanisms

Evaluation on Configuration Stiffness of Overconstrained 2R1T Parallel Mechanisms

扫码查看
Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subse-quently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and con-straint force of each branch in the whole working space are calculated tofurther elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiff-ness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.

Parallel mechanismStiffnessOver-constrainedThree degrees of freedom

Xuejian Ma、Zhenghe Xu、Yundou Xu、Yu Wang、Jiantao Yao、Yongsheng Zhao

展开 >

Parallel Robot and Mechatronic System Laboratory of Hebei Province,Yanshan University,Qinhuangdao 066004,China

Key Laboratory of Advanced Forging and Stamping Technology and Science of Ministry of National Education,Yanshan University,Qinhuangdao 066004,China

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaHebei Provincial Science and Technology Project

51875495U2037202206Z1805G

2024

中国机械工程学报
中国机械工程学会

中国机械工程学报

CSTPCD
影响因子:0.765
ISSN:1000-9345
年,卷(期):2024.37(3)