首页|基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究

基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究

扫码查看
目前机器人作业任务规划通常依赖于人为手动示教与离线编程,这往往需要操作人员花费大量的时间精力对机器人的操作流程进行定义与程序编写.为了进一步提高机器人装配作业任务规划的自主性和高效性,提出一种基于数据融合与知识推理的机器人装配单元数字孪生建模方法,研究机器人装配单元从物理空间到虚拟空间的高保真映射,为后续机器人在数字孪生环境下的自主动态装配作业奠定基础.将机器人装配单元数字孪生模型分为机器人与工艺工装、产品以及机器人装配过程三个部分,并分别提出了基于虚实映射的机器人与工艺工装数字孪生建模方法、融合多源异构数据的产品数字孪生建模方法以及基于知识推理的机器人装配作业过程数字孪生建模方法,在此基础上实现机器人装配作业任务的快速规划和仿真验证.最后将所提方法应用在某款步进电机的机器人装配作业任务规划中,验证了提出的方法在实际应用场景下的有效性.
Research on Digital Twin Modeling Method for Robotic Assembly Cell Based on Data Fusion and Knowledge Reasoning
At present,robotic task planning usually relies on manual teaching or offline programming,which often requires operators to spend a lot of time to define and program the operating process of robot.In order to further improve the autonomy and efficiency of robotic assembly task planning,a digital twin modeling method for robotic assembly cell based on data fusion and knowledge reasoning is proposed.The proposed method maps robotic assembly cell from physical space to virtual space,which lays the foundation for subsequent autonomous and dynamic assembly operations of robot in the digital twin environment.The robotic assembly cell is divided into three parts:robot & toolings,product,and robotic assembly process.The methods for constructing digital twin models of robot & toolings,product,and robotic assembly process are studies based on virtual-real mapping,fusion of multi-source heterogeneous data,and knowledge reasoning,respectively.The digital twin model of robotic assembly cell can realize fast planning and simulation verification for robotic assembly tasks.Finally,the proposed method is applied to the robotic assembly task planning for a type of stepping motor.The effectiveness of the proposed method in real application cases is verified.

digital twinindustrial robotassemblymodelingtask planning

刘达新、王科、刘振宇、许嘉通、谭建荣

展开 >

浙江大学计算机辅助设计与图形学国家重点实验室 杭州 310027

设计工程及数字孪生浙江省工程研究中心 杭州 310027

数字孪生 工业机器人 装配 建模 任务规划

国家重点研发计划国家自然科学基金浙江省重点研发计划

2019YFB1312600520754802021C01008

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(5)
  • 24