首页|平面光学元件超平整吸附装载的优化设计与分析

平面光学元件超平整吸附装载的优化设计与分析

扫码查看
在平面光学元件加工和应用中,采用真空吸附方式进行装载,具有快速、稳定的优势,而真空吸附对平面光学元件的面形影响不可忽视.基于有限元分析方法,针对功能窗口限制、倒立装载等特殊需求,对真空吸盘气道进行优化设计,并通过实验对真空吸盘的实际效果进行分析.实验结果表明,在吸盘不锁紧状态下吸附,平面光学元件在中心Φ10mm、Φ20mm和Φ40 mm范围内,面形PV分别为1.2 nm、5.1 nm和20.8 nm.在此基础上,论文进一步分析了装载平台平整度、吸盘装载方式和吸盘锁紧力对吸附结果的影响,结果表明:平面光学元件吸面型随着装载平台平整度的提升而提升;装载平台平整度2µm条件下,采用四螺钉、2.5 N·m扭矩进行边沿固定,吸附效果达到最好,在中心Φ10 mm、Φ20mm和Φ40mm范围内,面形PV平均值分别为7.8 nm、27.7 nm和114.2 nm,装载重复性标准差为0.93 nm、3.2nm和10.6nm.
Optimal Design and Analysis of Ultra-flat Adsorption Loading for Planar Optical Components
In the processing and application of flat optical components,vacuum adsorption loading has the advantages of fast and stable.However,the influence of vacuum adsorption on the surface shape of flat optical components cannot be ignored.Based on the finite element analysis method,the airway of the vacuum sucker is optimized for special requirements such as functional window limitation and inverted loading.Meanwhile,the actual effect of vacuum sucker is analyzed through experiments.The experimental results show that when the vacuum sucker is not locked,the surface PV(Peak to Valley)at the substrate center,within the range of Φ10 mm、Φ20 mm and Φ40 mm,are 1.2 nm,5.1 nm and 20.8 nm,respectively.On this basis,the effects about the flatness of the loading platform,the loading method of the suction cup and the locking force of the suction cup on the adsorption effect are further analyzed.The results show that the surface PV of the flat optical element decreases with the increase of the flatness of the loading platform;When the flatness of the loading platform is 2 μm,four screws and 2.5 N·m torque are used to fix the edge,and the adsorption result is the best;In the center range of Φ10 mm,Φ20 mm and Φ40 mm,the mean surface PV are 7.8 nm,27.7 nm and 114.2 nm,respectively,and the loading repeatability standard deviations are 0.93 nm,3.2 nm and 10.6 nm.

vacuum adsorptionairway optimizationfinite element analysisoptical surface measurementtorque control

赵承伟、张文豪、龚天诚、张逸云、王长涛、罗先刚

展开 >

中国科学院光场调控科学技术全国重点实验室 成都 610209

中国科学院光电技术研究所微细加工光学技术国家重点实验室 成都 610209

中国科学院大学 北京 100049

真空吸附 气道优化 有限元分析 面形测量 扭矩控制

四川省科技计划中国科学院青年创新促进会

2022YFG0001202238

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(5)
  • 17