首页|基于深度强化学习的自动化码头堆场场桥调度方法

基于深度强化学习的自动化码头堆场场桥调度方法

扫码查看
场桥是自动化码头堆场中的核心作业机械,场桥的合理调度是集装箱作业效率提升的关键.针对场桥调度问题具有的复杂时空耦合特性和高度的动态性,以最小化自动导引车(Automatic guided vehicle,AGV)和外集卡的等待时间为优化目标构建数学规划模型,并提出一种新颖的深度强化学习方法进行求解.算法设计贴近实际堆场作业环境的智能体,并在智能体与环境的交互部分通过指针网络、注意力机制和演员-评论家(Actor-critic,A-C)架构的设计提高了获取状态中的隐藏模式的能力.在基于洋山四期自动化码头实际数据生成的不同规模的算例上展开试验,所提算法能实现场桥调度方案的高效输出,相较于一些启发式规则算法有17%左右的性能提升.试验结果表明所提调度方法是有效且优越的,能够在实际中为堆场作业提供动态决策支持.
Yard Crane Scheduling Method Based on Deep Reinforcement Learning for the Automated Container Terminal
As the core working machinery of automated terminal yard,the dispatching of yard crane is the key to improve the efficiency of container operation.In order to minimize the waiting time of AGVs and external container trucks,a mathematical programming model for the yard crane scheduling problem is established considering complex spatio-temporal coupling characteristics and high dynamic,and a novel deep reinforcement learning method is proposed to solve the problem.The algorithm describes the yard environment close to reality through the agent definition,and improves the ability of extracting hidden state patterns through pointer network,attention mechanism and A-C architecture in the interaction design between the agent and the environment.Experiments are carried out on examples of different scales based on the actual data of Yangshan Phase Ⅳ Automated Terminal.The results show that the proposed algorithm can provide an approximately optimal crane scheduling scheme in a relatively short time,and the performance of it is about 17%better compared with state-of-art heuristic rule algorithms.Therefore,the proposed scheduling method is effective and superior,and it can provide dynamic decision support for yard operation in practice.

automated container terminalyardyard crane schedulingdeep reinforcement learning

王无印、黄子钊、庄子龙、方怀瑾、秦威

展开 >

上海交通大学工业工程与管理系 上海 200240

上港国际港务(集团)股份有限公司 上海 200080

自动化集装箱码头 堆场 场桥调度 深度强化学习

国家重点研发计划

2019YFB1704401

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(6)
  • 26