首页|基于自适应变参数MPC的分布式驱动智能车轨迹跟踪控制

基于自适应变参数MPC的分布式驱动智能车轨迹跟踪控制

扫码查看
为了协调分布式驱动智能驾驶车辆的轨迹跟踪精确性和稳定性,提高控制算法对车速扰动和路面附着系数变化等不确定性因素的自适应能力,基于平方根容积卡尔曼滤波(Square rooting cubature Kalman filter,SRCKF)估计轮胎侧向力以在线修正轮胎侧偏刚度,并基于T-S模糊变权重的MPC控制策略以实现轨迹跟踪控制.针对分布式驱动智能车全轮独立可控的特点,以前轮转角和各轮纵向驱动力为控制变量,以实时横向误差和横摆角误差为模糊输入,通过T-S模糊控制在线优化MPC目标函数权重,协调权重矩阵对轨迹跟踪精确性和稳定性的影响.通过仿真和试验数据,验证所提控制策略在多种工况下的有效性.研究表明,相比于传统MPC控制,所提出的自适应变参数MPC(Adaptive variable parameter MPC,AMPC)对80~120 km/h双移线湿滑路面、对接路面工况均有良好的跟踪效果,可有效提高轨迹跟踪精度,并能够协调控制跟踪精确性和稳定性,减少控制输出量的波动.
Trajectory Tracking Control of Distributed Driving Intelligent Vehicles Based on Adaptive Variable Parameter MPC
To coordinate the trajectory tracking accuracy and stability of distributed drive intelligent driving vehicles and improve the adaptive capability of the control algorithm to uncertainties such as speed perturbations or road surface adhesion coefficient changes,the square rooting cubature Kalman filter(SRCKF)based tire lateral force estimation is used to online correct the tire cornering stiffness.The MPC control strategy based on T-S fuzzy variable weight is proposed to realize the trajectory tracking control.The front wheel steering angle and longitudinal drive force of each wheel are used as control variables under the characteristics of distributed drive intelligent vehicle with all-wheel independent controllability.The real-time lateral error and yaw error are used as fuzzy inputs to optimize the MPC objective function weights online by T-S fuzzy control and coordinate the influence of the weight matrix on the trajectory tracking accuracy and stability.The effectiveness of the proposed control strategy under various operating conditions is verified by simulation and experimental data.It is shown that compared with the traditional MPC control,the proposed adaptive variable parameter MPC(AMPC)has good tracking effect on 80-120 km/h double lane change,wet road and docking road conditions.AMPC can effectively improve the trajectory tracking accuracy,and can coordinate the control tracking accuracy and stability,meanwhile reduce the fluctuation of control output volume.

Intelligent drivingtrajectory trackingtire force estimationdistributed drivingcondition adaption

杨泽坤、李韶华、王振峰

展开 >

湖南大学机械与运载工程学院 长沙 410082

石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043

中汽研(天津)汽车工程研究院有限公司 天津 300300

智能驾驶 轨迹跟踪 轮胎力估计 分布式驱动 工况自适应

国家自然科学基金河北省重点研发计划河北省省级科技计划

U22A2024621342202D225676162GH

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(6)
  • 34