首页|小波核编码的脉冲卷积神经网络在可解释性智能诊断中的应用研究

小波核编码的脉冲卷积神经网络在可解释性智能诊断中的应用研究

扫码查看
近年来,人工神经网络在可解释性机械故障智能诊断研究中已经取得一些成果.然而人工神经网络本身不是模拟生物神经网络的学习机制,缺乏生物可解释性.脉冲神经网络能够很好地模拟生物信号在神经网络中的传播,具有较强的生物可解释性,但当前的脉冲编码方式缺乏物理可解释性.提出一种兼具物理可解释性和生物可解释性的小波核编码的脉冲卷积神经网络,用于轴承端到端的可解释性智能诊断.首先,设计一种小波核编码器,利用小波核卷积从轴承振动信号中提取多尺度物理特征,进而采用脉冲神经元将其编码为脉冲编码信息;其次,构建多层脉冲卷积特征提取器,从脉冲编码信息中提取深层状态特征;最后,建立脉冲分类器,通过输出层脉冲神经元的放电概率预测轴承的健康状态.采用两组轴承健康状态数据集验证所提模型的可解释性和有效性.试验结果表明:脉冲编码信息能够清晰反映轴承不同健康状态,具有物理可解释性;所提方法能够实现端到端的模型训练,故障诊断准确率与传统卷积神经网络相当,而模型收敛的稳定性更优.
Interpretable Intelligent Diagnosis Based on Wavelet Kernel Encoded Spiking Convolutional Neural Networks
In recent a few years,some achievements have been obtained for artificial neural networks(ANN)in interpretable intelligent diagnosis of mechanical faults.However,the ANN model itself does not mimic the learning mechanism of biological neural networks,thus lacks biological interpretability.Spiking neural networks(SNN)can well simulate how biological signals are transmitted in the neural networks,which has good biological interpretability.However,the current spiking encoding manners have no physical interpretability.A model of wavelet kernel encoded spiking convolutional neural networks(WKE-SCNN)is proposed for bearing end-to-end interpretable intelligent diagnosis,which has both physical interpretability and biological interpretability.First,a wavelet kernel encoder is designed,in which multi-scale physical features are extracted from bearing vibration signals using wavelet kernel convolution,and spiking encoding information is obtained using spiking neurons.Then,a multi-layer spiking convolution feature extractor is constructed,which is used to extract deep-level state features from the spiking encoding information.Finally,a spiking classifier is established,which predicts the bearing health states according to fire rates of the spiking neurons in the output layer.Two groups of bearing datasets are utilized to verify the interpretability and effectiveness of the proposed model.Experimental results show that,the spiking encoding information can clearly reflect different health states of the bearings,thus has physical interpretability;the proposed WKE-SCNN can be trained in the end-to-end manner,and the fault diagnosis accuracy is comparative to the traditional convolutional neural networks(CNN),while the convergence stability of the proposed method is superior to the traditional CNN.

intelligent diagnosisspiking neural networksbiological interpretabilityphysical interpretabilitywavelet transform

王俊、杨轶青、刘金朝、沈长青、黄伟国、朱忠奎

展开 >

苏州大学轨道交通学院 苏州 215131

中国铁道科学研究院集团有限公司基础设施检测研究所 北京 100081

智能诊断 脉冲神经网络 生物可解释性 物理可解释性 小波变换

国家自然科学基金资助项目国家自然科学基金资助项目国家自然科学基金资助项目

522751215207535352272440

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(12)