首页|基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究

基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究

扫码查看
对于复杂旋转机械关键部件的诊断任务,模型设计容易受限于以下两个特点:①机理驱动的方法往往难以实现复杂系统的完备、精准建模;②数据驱动方法多数需要规模化的高质量训练数据集用于训练.针对上述问题,提出一种先验知识嵌入的深度学习模型,融合机理知识与传感器信号特征.并通过引入轻量化模型结构,在保证模型精准性的前提下降低推理延迟.首先,通过融合先验机理知识与传感器信号特征,构建关键部件数字孪生体.然后,设计先验知识嵌入模块来提升深度学习模型对融合特征的表征能力.最后,基于帕累托最优化理论,设计考虑准确性指标和计算效率指标的多目标优化方法,对基于深度学习的诊断模型进行结构优化设计,并引入可解释性框架对深度学习模型决策过程进行分析.结果表明,所设计的关键部件数字孪生体能够提供丰富的先验信息从而加速模型收敛.基于帕累托最优化理论的训练策略,能够搜索到设定指标的相对最优解,从而在保证模型精准性的前提下有效降低模型推理延迟.
Study on Fault Diagnostics and Knowledge Embedding of Complex Rotating Machinery Components Based on Low Delay Interpretable Deep Learning
For the diagnosis task of key components of complex rotating machinery,the design of the diagnosis model is easily constrained by the following two characteristics:① Mechanism-driven methods are often hard to accomplish complete and accurate modelling of complex systems;(2)Data-driven approaches often require large-scale and high-quality data for training.To solve the above problems,a deep learning model with prior knowledge embedding is proposed to fuse prior knowledge from the mechanism and features of sensor signals.By introducing lightweight model structures,the inference delay of the model is reduced while ensuring its accuracy.Firstly,the digital twin model of key components is constructed by fusing the prior mechanism knowledge and sensor signal features.Secondly,a prior knowledge embedding module is designed to enhance the representation ability of the deep learning model for fused features.Finally,a multi-objective optimization method considering both accuracy and computing efficiency metrics is designed based on the Pareto-optimal theorem.An interpretable framework is introduced to analyse the decision-making process of the deep learning model.The results indicate that the designed digital twin of key components can provide rich prior knowledge to accelerate the convergence of the model.The training strategy based on the Pareto-optimal theorem can find the optimal solution according to settled metrics.The optimization can effectively reduce the inference latency while ensuring recognition performance.

interpretable deep learningprior knowledge embeddingdigital twinpareto optimallow-latency inference

刘岳开、王天杨、褚福磊

展开 >

清华大学摩擦学国家重点实验室 北京 100084

清华大学机械工程系 北京 100084

可解释深度学习 先验知识嵌入 数字孪生 帕累托最优化 低延迟推理

国家自然科学基金国家自然科学基金委员会与波兰国家科学中心合作研究

5230511652161135101

2024

机械工程学报
中国机械工程学会

机械工程学报

CSTPCD北大核心
影响因子:1.362
ISSN:0577-6686
年,卷(期):2024.60(12)