首页|基于深度残差网络的机床减速器故障诊断研究

基于深度残差网络的机床减速器故障诊断研究

扫码查看
为了进一步提高对机床不同故障的分类准确率,设计了一种深度残差网络。通过对机床振动试验台信号预处理优化网络结果,并进行故障诊断对比分析。研究结果表明:当行数比列数更少时,随着两者差异增加,模型分类准确率显著降低;当行数超过列数后,模型达到了更高的分类准确率并保持相对稳定的状态。CNN网络比浅层模型LeNet表现出了更强识别性能。ShortCut结构具备明显优越性,有助于网络具备更强识别能力。该研究有助于提高减速器的运行效率,可将其拓宽到其他机械传动领域,具有很好的应用价值。
Optimization and Fault Diagnosis of Machine Tool Vibration Signal Depth Residual Network
In order to improve the classification accuracy of different machine tool faults,a deep residual network is designed.lhe network results of machine tool vibration test bench signal preprocessing were optimized and the fault diagnosis was analyzed.The results show that when the number of rows is less than the number of columns,the classification accuracy of the model decreases significantly with the increase of the difference between the two.When the number of rows exceeds the number of columns,the model achieves a higher classification accuracy and maintains a relatively stable state.The CNN network shows stronger recognition performance than the shallow model LeNet.The ShortCut structure has an obvious advantage,which helps the network to have stronger identification capability.The research is helpful to improve the running efficiency of the reducer and broaden it to other fields of mechanical transmission,which has good application value.

shield cutter headperformance evaluationt-distributed random neighborhood embeddingsignal dimension reduction

李彩霞

展开 >

河南工业贸易职业学院信息工程学院,河南 郑州 451191

机床 残差网络 故障诊断 振动信号

河南省重点研发与推广专项

202102210177

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(1)
  • 5