首页|基于振动信号的冶金机械中轴承故障特征提取及诊断分析

基于振动信号的冶金机械中轴承故障特征提取及诊断分析

扫码查看
为进一步探究冶金机械轴承故障诊断准确率的提升路径,首先基于冶金机械轴承故障信号的特点,建立采集平台对轴承故障特征数据进行全面而精准的采集;而后基于采集结果,以自适应模糊熵提取方法为核心,建立基于振动信号提取的轴承故障诊断方法。从仿真分析测试结果来看,建立的故障诊断方法在准确性方面较具优势,预计其在后续的轴承故障诊断实际工作中也将具有潜在的应用价值。
Feature Extraction and Diagnosis Analysis of Bearing Failure in Metallurgical Machinery Based on Vibration Signal
In order to further explore the path to improve the accuracy of bearing fault diagnosis in metallurgical machinery,firstly,based on the characteristics of bearing fault signals in metallurgical machinery,we set up an acquisition platform to collect comprehensive and accurate data on the bearing fault characteristics;then,based on the acquisition results,we establish a bearing fault diagnosis method based on the vibration signals with the core of the adaptive fuzzy entropy extraction method.From the simulation analysis test results,the established fault diagnosis method has more advantages in terms of accuracy,and it is expected that it will have potential application value in the subsequent practical work of bearing fault diagnosis.

vibration signalmetallurgical machinerybearing faultfault analysisfault diagnosis

刘东波

展开 >

北京首钢股份有限公司,河北 唐山 064400

振动信号 冶金机械 轴承故障 故障分析 故障诊断

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(1)
  • 1
  • 1