机械管理开发2024,Vol.39Issue(3) :96-99.DOI:10.16525/j.cnki.cn14-1134/th.2024.03.036

迁移学习在机械设备故障诊断领域的进展研究

A Study on the Progress of Transfer Learning in the Field of Mechanical Equipment Fault Diagnosis

陈驻民 韦继程
机械管理开发2024,Vol.39Issue(3) :96-99.DOI:10.16525/j.cnki.cn14-1134/th.2024.03.036

迁移学习在机械设备故障诊断领域的进展研究

A Study on the Progress of Transfer Learning in the Field of Mechanical Equipment Fault Diagnosis

陈驻民 1韦继程2
扫码查看

作者信息

  • 1. 上海第二工业大学智能制造与控制工程学院,上海 201209
  • 2. 上海第二工业大学计算机与信息工程学院,上海 201209
  • 折叠

摘要

迁移学习是一种新兴的机器学习方法,通过运用已学习的知识对不同但相关领域问题进行求解,能够较为有效的解决模型泛化能力弱、样本数据不足等问题.针对迁移学习在机械设备故障诊断领域的应用方法进行了综述,总结了三类关于迁移学习的诊断预测方法,并对迁移学习在故障诊断领域的未来研究方向进行了探讨.

Abstract

Migration learning is an emerging machine learning method,which can solve the problems of different but related domains by applying the learned knowledge,and can solve the problems of weak model generalisation ability and insufficient sample data more effectively.This paper provides an overview of the application of transfer learning in the field of mechanical equipment fault diagnosis,summarises three types of diagnostic prediction methods on transfer learning,and discusses the future research direction of transfer learning in the field of fault diagnosis.

关键词

迁移学习/故障诊断/参数微调/特征对齐/生成对抗网络

Key words

migration learning/fault diagnosis/parameter fine-tuning/feature alignment/generative adversarial network

引用本文复制引用

出版年

2024
机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
参考文献量16
段落导航相关论文