首页|多参数水质检测智能传感器信号处理及建模

多参数水质检测智能传感器信号处理及建模

扫码查看
针对多参数水质检测中智能传感器易受到环境、噪声、光源等干扰因素的影响,提出一种结合递推平均滤波算法和小波变换算法的传感器信号处理方法。该方法利用递推平均滤波算法对传感器输入信号的周期性干扰因素进行预处理,并利用小波变换算法进一步减少传感器信号的噪声。小波变换算法能够通过伸缩和平移来细化采集信号,以此实现对时频的局部化处理,最终达到对高频部分进行时间细化、对低频部分进行频率细化的目的。实验结果显示,在同样的阈值条件下,降低噪声的数量越多,对噪声的抑制作用越显著。由此验证了所提方法的有效性。
Signal Processing and Modelling of Smart Sensors for Multi-Parameter Water Quality Detection
Aiming at the multi-parameter water quality detection intelligent sensor is susceptible to the environment,noise,light source and other interference factors,the experiment proposes a combination of recursive average filtering algorithm and wavelet transform algorithm of the sensor signal processing method.The method first uses the recursive average filtering algorithm to pre-process the periodic interference factors of the sensor input signal,and then uses the wavelet transform algorithm to further reduce the signal noise of the sensor signal.The wavelet transform algorithm is able to refine the collected signals by stretching and translating,so as to achieve the localisation of time and frequency,and ultimately achieve the purpose of time refinement for the high-frequency part and frequency refinement for the low-frequency part.The experimental results show that under the same threshold conditions,the more the amount of noise reduction,the more significant the noise suppression effect.The effectiveness of the proposed method is thus verified.

multi-parameter water quality detectionsensor signal processingrecursive average filtering algorithmwavelet transform algorithm

陈帅

展开 >

江苏省启东中等专业学校,江苏 启东 226200

多参数水质检测 传感器信号处理 递推平均滤波算法 小波变换算法

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(4)
  • 3